上海交通大学学报(英文版) ›› 2014, Vol. 19 ›› Issue (6): 675-680.doi: 10.1007/s12204-014-1565-8
HUANG Qian-wei (黄芊蔚), WANG Li-ping (王莉萍), WANG Jin-ye* (王瑾晔)
出版日期:
2014-12-31
发布日期:
2014-12-08
通讯作者:
WANG Jin-ye (王瑾晔)
E-mail:jinyewang@sjtu.edu.cn
HUANG Qian-wei (黄芊蔚), WANG Li-ping (王莉萍), WANG Jin-ye* (王瑾晔)
Online:
2014-12-31
Published:
2014-12-08
Contact:
WANG Jin-ye (王瑾晔)
E-mail:jinyewang@sjtu.edu.cn
摘要: Bone defect caused by injury, infection, tumor and congenital diseases is one of the most common diseases in clinical orthopaedics. Bone grafts are necessary when self-healing is not effective during the recovery. Preparation of ideal bone substitutes with good biocompatibility and biodegradability to repair bone defects has become the focus. So far artificial materials used in hard tissue repair and reconstruction most notably are metals and their alloys, then the ceramic materials and their composite materials. From the perspective of mechanical properties, metals have some advantages, but corrosion issue and stress shielding of metal have baffled scientists through the age and have been long searched for solution. The elastic modulus of ceramic is more close to the natural bone compared to metal while the improvement of brittleness has been always the emphasis for clinical use. Therefore, development of materials of proper mechanical properties without affecting biological compatibility has become a significant subject.
中图分类号:
HUANG Qian-wei (黄芊蔚), WANG Li-ping (王莉萍), WANG Jin-ye* (王瑾晔). Mechanical Properties of Artificial Materials for Bone Repair[J]. 上海交通大学学报(英文版), 2014, 19(6): 675-680.
HUANG Qian-wei (黄芊蔚), WANG Li-ping (王莉萍), WANG Jin-ye* (王瑾晔). Mechanical Properties of Artificial Materials for Bone Repair[J]. Journal of shanghai Jiaotong University (Science), 2014, 19(6): 675-680.
[1] Lanza R, Langer R, Vacanti J. Principles of tissue engineering [M]. Waltham, USA: Academic press,2011: 1224-1236.[2] Silver F H. Biomaterials, medical devices and tissue engineering: An integrated approach [M]. Heidelberg,Germany: Springer, 1994: 1-45.[3] Nakahara H, Bruder S P, Haynesworth S E, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum [J].Bone, 1990, 11(3): 181-188.[4] Cowin S C. Bone mechanics handbook [M]. Boca Raton,FL, USA: CRC Press, 2001.[5] Disegi J A, Eschbach L. Stainless steel in bone surgery [J]. Injury-International Journal of The Care of The Injured, 2000, 31(Sup 4): D2-D6.[6] Van Noort R. Titanium: The implant material of today [J]. Journal of Materials Science, 1987, 22(11):3801-3811.[7] Chu C L, Chung C Y, Lin P H, et al. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis [J]. Materials Science and Engineering A, 2004, 366(1): 114-119.[8] Levine B R, Sporer S, Poggie R A, et al. Experimental and clinical performance of porous tantalum in orthopedic surgery [J]. Biomaterials, 2006, 27(27):4671-4681.[9] Bobyn J D, Toh K K, Hacking S A, et al. Tissue response to porous tantalum acetabular cups: A canine model [J]. The Journal of Arthroplasty, 1999, 14(3):347-354.[10] Matsuno H, Yokoyama A, Watari F, et al. Biocompatibility and osteogenesis of refractory metal implants,titanium, hafnium, niobium, tantalum and rhenium [J]. Biomaterials, 2001, 22(11): 1253-1262.[11] Johansson C B, Hansson H A, Albrektsson T.Qualitative interfacial study between bone and tantalum,niobium or commercially pure titanium [J]. Biomaterials,1990, 11(4): 277-280.[12] Hench L L, Splinter R J, Allen W C, et al.Bonding mechanisms at the interface of ceramic prosthetic materials [J]. Journal of Biomedical Materials Research, 1971, 5(6): 117-141.[13] Cheng K, Han G, WengW, et al. Sol-gel derived fluoridated hydroxyapatite films [J]. Materials Research Bulletin, 2003, 38(1): 89-97.[14] Bernard L, Freche M, Lacout J L, et al. Preparation of hydroxyapatite by neutralization at low temperature — influence of purity of the raw material [J].Powder Technology, 1999, 103(1): 19-25.[15] Jarcho M, Bolen C H, Thomas M B, et al. Hydroxylapatite synthesis and characterization in dense polycrystalline form [J]. Journal of Materials Science,1976, 11(11): 2027-2035.[16] Woodard J R, Hilldore A J, Lan S K, et al.The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity [J]. Biomaterials, 2007, 28(1): 45-54.[17] Albee F H, Morrison H F. Studies in bone growth:triple calcium phosphate as a stimulus to osteogenesis[J]. Annals of Surgery, 1920, 71(1): 32-39.[18] Peter S J, Miller S T, Zhu G, et al. In vivo degradation of a poly (propylene fumarate)/β-tricalcium phosphate injectable composite scaffold [J]. Journal of Biomedical Materials Research, 1998, 41(1): 1-7.[19] Miao X, Tan D M, Li J, et al. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid) [J].Acta Biomaterialia, 2008, 4(3): 638-645.[20] Peitl O, Zanotto E D, Hench L L. Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics [J]. Journal of Non-Crystalline Solids, 2001, 292(1): 115-126.[21] Cao W, Hench L L. Bioactive materials [J]. Ceramics International, 1996, 22(6): 493-507.[22] Marghussian V K, Sheikh-Mehdi Mesgar A. Effects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system [J]. Ceramics International,2000, 26(4): 415-420.[23] Lee E J, Teng S H, Jang T S, et al. Nanostructured poly (ε-caprolactone)-silica xerogel fibrous membrane for guided bone regeneration [J]. Acta Biomaterialia,2010, 6(9): 3557-3565.[24] Moore D C, Chapman M W, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects [J]. Journal of Orthopaedic Research, 1987, 5(3): 356-365.[25] Verdonschot N, Van Hal C T H, Schreurs B W, et al. Time-dependent mechanical properties of HA/TCP particles in relation to morsellized bone grafts for use in impaction grafting [J]. Journal of Biomedical Materials Research, 2001, 58(5): 599-604.[26] Ryu H S, Hong K S, Lee J K, et al. Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility [J]. Biomaterials, 2004, 25(3): 393-401.[27] Gong X H, Tang C Y, Hu H C, et al. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene [J]. Journal of Materials Science: Materials in Medicine, 2004, 15(10):1141-1146.[28] Silva V V, Lameiras F S, Domingues R Z.Microstructural and mechanical study of zirconiahydroxyapatite (ZH) composite ceramics for biomedical applications [J]. Composites Science and Technology,2001, 61(2): 301-310.[29] Villar G, Graham A D, Bayley H. A tissue-like printed material[J]. Science, 2013, 340(6128): 48-52. |
[1] | SHI Junyu (史俊宇), LI Yuan (李元), ZHANG Xiao (张枭), ZHANG Xiaomeng (张晓梦), LAI Hongchang (赖红昌). Accuracy Assessment of a Novel Radiographic Method to Evaluate Guided Bone Regeneration Outcomes Using a 3D-Printed Model[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 284-289. |
[2] | XU Jiangchang (许江长), HE Shamin (何莎敏), YU Dedong (于德栋), WU Yiqun (吴轶群), CHEN Xiaojun, (陈晓军). Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 298-305. |
[3] | KAN Tianyou(阚天佑), XIE Kai(谢凯), QU Yang(曲扬), AI Songtao (艾松涛), JIANG Wenbo (姜闻博), WU Haishan (吴海山), WANG Liao(王燎), YAN Mengning(严孟宁). 3D-Printed Porous Titanium Augments for Reconstruction of Massive Bone Defect in Complex Revision Total Knee Arthroplasty: Implant Design and Surgical Technique[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 334-338. |
[4] | JIANG Taoran(姜陶然), YU Zheyuan (俞哲元), YUAN Jie (袁捷), XU Liang (徐梁), DUAN Huichuang (段惠川), ZHOU Sizheng (周思政), CAO Dejun(曹德君), WEI Min (韦敏). Workflow and Principles for Precisely Designing a Custom-Made Polyetheretherketone Implant Applied in Irregular Craniofacial Bone Defects[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 404-410. |
[5] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[6] | KOU Haixia, AN Zongwen, MA Qiang, GUO Xu. Lifetime Prediction of Wind Turbine Blade Based on Full-Scale Fatigue Testing [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 755-761. |
[7] | ZHAO Yong, JI Xiaojun, DAI Ming, QI Hongli, GAO Junkai. Analysis of Transmission Power and Efficiency of Side-Mounted Inductive Power Supply System for Metal Rotary Shafts[J]. Journal of Shanghai Jiaotong University(Science), 2020, 25(3): 273-280. |
[8] | CHEN Xia, WEN Tong, LIU Kefan, HONG Yifei . Test of Friction Parameters in Bulk Metal Forming Based on Forward Extrusion Processes[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 333-339. |
[9] | DING Kewei, LIU Jianhua, REN Jianwei, MA Wei . Dynamic Responses of Cellular Metal-Filled Steel Beam-Column Joint Under Impact Loading[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 384-393. |
[10] | YANG Chunyu (杨春雨), CHE Zhiyuan (车志远), ZHOU Linna (周林娜) . Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 782-788. |
[11] | SHEN Kechun (沈克纯), PAN Guang *(潘光). Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 534-544. |
[12] | JIANG Zhao (姜朝), HUA Xueming* (华学明), HUANG Lijin (黄立进),WU Dongsheng (吴东升), LI Fa. High Efficiency and Quality of Multi-Pass Tandem Gas Metal Arc Welding for Thick Al 5083 Alloy Plates[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 148-157. |
[13] | WANG Junzhen (王军振), SHEN Yanfeng* (申岩峰). Numerical Investigation of Ultrasonic Guided Wave Dynamics in Piezoelectric Composite Plates for Establishing Structural Self-Sensing[J]. sa, 2018, 23(1): 175-181. |
[14] | LIN Liexiong (林烈雄), LU Hao* (陆皓), XU Jijin (徐济进),CHEN Junmei (陈俊梅), YU Chun (余春). Application of Digital Image Correlation Method to In-Situ Dynamic Strain Measurement[J]. 上海交通大学学报(英文版), 2017, 22(6): 719-725. |
[15] | HE Junyi (何俊艺), WANG He (王贺), PENG Linfa (彭林法),YI Peiyun* (易培云), LAI Xinmin (来新民. Investigation of Springback Behavior and Process Control for Stamping of Ring-Shaped Workpiece[J]. 上海交通大学学报(英文版), 2017, 22(4): 385-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||