[1] Sperotto A, Schaffrath G, Sadre R, et al. An overview of IP flow-based intrusion detection [J]. IEEE Communications Surveys & Tutorials, 2010, 12(3):343-356.[2] Li P, Salour M, Su X. A survey of Internet worm detection and containment [J]. IEEE Communications Surveys & Tutorials, 2008, 10(1): 20-35.[3] Zhang J, Zulkernine M, Haque A. Randomforests-based network intrusion detection systems [J].IEEE Transactions on System, Man, and Cybernetics.Part C: Applications and Reviews, 2008, 38(5): 649-659.[4] Lee W, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models[C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, USA: IEEE, 1999: 120-132.[5] Koc L, Mazzuchi T A, Sarkani S. A network intrusion detection system based on a hidden Na¨?ve bayes multiclass classifier [J]. Expert Systems with Applications,2012, 39(18): 13492-13500.[6] Wang G, Hao J, Ma J, et al. A new approach to intrusion detection using artificial neural networks and fuzzy clustering [J]. Expert Systems with Applications,2010, 37(9): 6225-6232.[7] Shon T, Kovah X, Moon J. Applying genetic algorithm for classifying anomalous TCP/IP packets [J].Neurocomputing, 2006, 69(16-18): 2429-2433.[8] Tsai C F, Lin C Y. A triangle area based nearest neighbors approach to intrusion detection [J]. Pattern Recognition, 2010, 43(1): 222-229.[9] Lin S W, Ying K C, Lee C Y, et al. An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection [J]. Applied Soft Computing, 2012, 12(10): 3285-3290.[10] Nie W, He D. A probability approach to anomaly detection with twin support vector machines [J]. Journals of Shanghai Jiaotong University (Science), 2010,15(4): 385-391.[11] Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.[12] Mangasarian O L. Nonlinear programming [M].Philadelphia, USA: SIAM, 1994: 131-145.[13] Kramer K A, Hall L O, Goldgof D B, et al. Fast support vector machines for continuous data [J]. IEEE Transactions on System, Man, and Cybernetics. Part B: Cybernetics, 2009, 39(4): 989-1001.[14] Lin S W, Lee Z J, Chen S C, et al. Parameter determination of support vector machines and feature selection using simulated annealing approach [J]. Applied Soft Computing, 2008, 8(4): 1505-1512.[15] Sch¨olkopf B, Smola A J. Learning with kernels:Support vector machines, regularization, optimization and beyond [M]. London, England: MIT Press, 2001:25-60.[16] UCI Knowledge Discovery in Databases Archive. KDD cup’99 data set [EB/OL]. (1999-10-28) [2013-02-25].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.[17] Sung A H, Mukkamala S. Identifying important features for intrusion detection using support vector machines and neural networks [C]// Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03). Orlando, USA: IEEE, 2003: 209-216.[18] Sheikhan M, Jadidi Z, Farrokhi A. Intrusion detection using reduced-size RNN based on feature grouping [J]. Neural Computing & Applications, 2012, 21(6):1185-1190.[19] Peng X. Building sparse twin support vector machine classifiers in primal space [J]. Information Sciences,2011, 181(18): 3967-3980. |