上海交通大学学报(英文版) ›› 2014, Vol. 19 ›› Issue (4): 448-454.doi: 10.1007/s12204-014-1524-4
HE Jun* (何俊), ZHENG Shi-hui (郑世慧)
出版日期:
2014-08-30
发布日期:
2014-10-13
通讯作者:
HE Jun (何俊)
E-mail: hejunml@gmail.com
HE Jun* (何俊), ZHENG Shi-hui (郑世慧)
Online:
2014-08-30
Published:
2014-10-13
Contact:
HE Jun (何俊)
E-mail: hejunml@gmail.com
摘要: Intrusion detection system (IDS) is becoming a critical component of network security. However, the performance of many proposed intelligent intrusion detection models is still not competent to be applied to real network security. This paper aims to explore a novel and effective approach to significantly improve the performance of IDS. An intrusion detection model with twin support vector machines (TWSVMs) is proposed. In this model, an efficient algorithm is also proposed to determine the parameter of TWSVMs. The performance of the proposed intrusion detection model is evaluated with KDD’99 dataset and is compared with those of some recent intrusion detection models. The results demonstrate that the proposed intrusion detection model achieves remarkable improvement in intrusion detection rate and more balanced performance on each type of attacks. Moreover, TWSVMs consume much less training time than standard support vector machines (SVMs).
中图分类号:
HE Jun* (何俊), ZHENG Shi-hui (郑世慧). Intrusion Detection Model with Twin Support Vector Machines[J]. 上海交通大学学报(英文版), 2014, 19(4): 448-454.
HE Jun* (何俊), ZHENG Shi-hui (郑世慧). Intrusion Detection Model with Twin Support Vector Machines[J]. Journal of shanghai Jiaotong University (Science), 2014, 19(4): 448-454.
[1] Sperotto A, Schaffrath G, Sadre R, et al. An overview of IP flow-based intrusion detection [J]. IEEE Communications Surveys & Tutorials, 2010, 12(3):343-356. [2] Li P, Salour M, Su X. A survey of Internet worm detection and containment [J]. IEEE Communications Surveys & Tutorials, 2008, 10(1): 20-35. [3] Zhang J, Zulkernine M, Haque A. Randomforests-based network intrusion detection systems [J].IEEE Transactions on System, Man, and Cybernetics.Part C: Applications and Reviews, 2008, 38(5): 649-659. [4] Lee W, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models[C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, USA: IEEE, 1999: 120-132. [5] Koc L, Mazzuchi T A, Sarkani S. A network intrusion detection system based on a hidden Na¨?ve bayes multiclass classifier [J]. Expert Systems with Applications,2012, 39(18): 13492-13500. [6] Wang G, Hao J, Ma J, et al. A new approach to intrusion detection using artificial neural networks and fuzzy clustering [J]. Expert Systems with Applications,2010, 37(9): 6225-6232. [7] Shon T, Kovah X, Moon J. Applying genetic algorithm for classifying anomalous TCP/IP packets [J].Neurocomputing, 2006, 69(16-18): 2429-2433. [8] Tsai C F, Lin C Y. A triangle area based nearest neighbors approach to intrusion detection [J]. Pattern Recognition, 2010, 43(1): 222-229. [9] Lin S W, Ying K C, Lee C Y, et al. An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection [J]. Applied Soft Computing, 2012, 12(10): 3285-3290. [10] Nie W, He D. A probability approach to anomaly detection with twin support vector machines [J]. Journals of Shanghai Jiaotong University (Science), 2010,15(4): 385-391. [11] Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910. [12] Mangasarian O L. Nonlinear programming [M].Philadelphia, USA: SIAM, 1994: 131-145. [13] Kramer K A, Hall L O, Goldgof D B, et al. Fast support vector machines for continuous data [J]. IEEE Transactions on System, Man, and Cybernetics. Part B: Cybernetics, 2009, 39(4): 989-1001. [14] Lin S W, Lee Z J, Chen S C, et al. Parameter determination of support vector machines and feature selection using simulated annealing approach [J]. Applied Soft Computing, 2008, 8(4): 1505-1512. [15] Sch¨olkopf B, Smola A J. Learning with kernels:Support vector machines, regularization, optimization and beyond [M]. London, England: MIT Press, 2001:25-60. [16] UCI Knowledge Discovery in Databases Archive. KDD cup’99 data set [EB/OL]. (1999-10-28) [2013-02-25].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [17] Sung A H, Mukkamala S. Identifying important features for intrusion detection using support vector machines and neural networks [C]// Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03). Orlando, USA: IEEE, 2003: 209-216. [18] Sheikhan M, Jadidi Z, Farrokhi A. Intrusion detection using reduced-size RNN based on feature grouping [J]. Neural Computing & Applications, 2012, 21(6):1185-1190. [19] Peng X. Building sparse twin support vector machine classifiers in primal space [J]. Information Sciences,2011, 181(18): 3967-3980. |
[1] | GUO Fei (郭非), CAO Zhenfu (曹珍富), LIU Zhusen (刘竹森), CAO Nanyuan (曹楠源). A Privacy-Preserving Aggregation and Authentication Scheme Towards Mobile Users in Smart Grid[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 37-43. |
[2] | GUO Jie*(郭捷), XU Jia-yun (徐家运), BAO Jia-li (鲍佳立). Region of Interest Based Selective Encryption Scheme for Privacy Protection in H.264 Video[J]. 上海交通大学学报(英文版), 2014, 19(4): 385-391. |
[3] | XIAO Ji-nian1 (肖佶年), JIA Yun-zhe1 (贾蕴哲), FU Er-dong1 (付尔东),HUANG Zheng1* (黄征), L. Audio Authenticity: Duplicated Audio Segment Detection in Waveform Audio File[J]. 上海交通大学学报(英文版), 2014, 19(4): 392-397. |
[4] | WANG Liang-liang1* (王亮亮), CHEN Ke-fei2 (陈克非),MAO Xian-ping1 (毛贤平), WANG Yong-tao. Efficient and Provably-Secure Certificateless Proxy Re-encryption Scheme for Secure Cloud Data Sharing[J]. 上海交通大学学报(英文版), 2014, 19(4): 398-405. |
[5] | MAO Xian-ping1 (毛贤平), CHEN Ke-fei2*(陈克非), LONG Yu1 (龙宇), WANG Liang-liang1 (王亮亮). Attribute-Based Signature on Lattices[J]. 上海交通大学学报(英文版), 2014, 19(4): 406-411. |
[6] | CHIEN Hung-yu (简宏宇). Provably Secure Authenticated Diffie-Hellman Key Exchange for Resource-Limited Smart Card[J]. 上海交通大学学报(英文版), 2014, 19(4): 436-439. |
[7] | WANG Chih-hung* (王智弘), TU Tai-yuan (涂泰源). Keyword Search Encryption Scheme Resistant Against Keyword-Guessing Attack by the Untrusted Server[J]. 上海交通大学学报(英文版), 2014, 19(4): 440-442. |
[8] | HUANG Jheng-jia1 (黄政嘉), LU Pei-chun2 (卢佩君), JUANG Wen-shenq2* (庄文胜), FAN Chun-i1. Secure and Efficient Digital Rights Management Mechanisms with Privacy Protection[J]. 上海交通大学学报(英文版), 2014, 19(4): 443-447. |
[9] | SHEN Zhong-hua (沈忠华), YU Xiu-yuan (于秀源) . Threshold Signature Scheme with Threshold Verification Based on Multivariate Linear Polynomial[J]. 上海交通大学学报(英文版), 2011, 16(5): 551-556. |
[10] | WANG Chih-hung (王智弘), WEI Shih-yi (魏仕益). Highly Resilient Key Distribution Strategy for Multi-level Heterogeneous Sensor Networks by Using Deployment Knowledge[J]. 上海交通大学学报(英文版), 2011, 16(5): 593-599. |
[11] | LO Nai-wei (罗乃维), YEH Kuo-hui (叶国晖). Simple Three-Party Password Authenticated Key Exchange Protocol[J]. 上海交通大学学报(英文版), 2011, 16(5): 600-603. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 673
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||