上海交通大学学报(英文版) ›› 2013, Vol. 18 ›› Issue (5): 542-548.doi: 10.1007/s12204-013-1438-6
JIANG Shu-qiang1* (姜述强), JIN Hong-zhang1 (金鸿章), WEI Feng-mei2,3 (魏凤梅)
出版日期:
2013-10-31
发布日期:
2013-12-05
通讯作者:
JIANG Shu-qiang (姜述强)
E-mail:jiangshuqiang@hrbeu.edu.cn
JIANG Shu-qiang1* (姜述强), JIN Hong-zhang1 (金鸿章), WEI Feng-mei2,3 (魏凤梅)
Online:
2013-10-31
Published:
2013-12-05
Contact:
JIANG Shu-qiang (姜述强)
E-mail:jiangshuqiang@hrbeu.edu.cn
摘要: This paper proposed a bi-criteria weighting approach for fault tolerant control (FTC) of SY-II remote operated vehicle (ROV). This approach integrates the minimum kinetic energy (2-norm optimal) approach with the infinity-norm approach through a weighting coefficient, on the basis of SY-II ROV force allocation model. For the realization of fault tolerable control, this approach converts a quadratic programming problem into primaldual neural network. From the motion control simulations and experiments, bi-criteria optimization approach outperforms minimum kinetic energy optimization in FTC, SY-II ROV can realize 2-degree of freedom (DOF) horizontal fault tolerant control with one main thruster and any of horizontal ones. Therefore, this scheme is proved to be of superiority and computational efficiency, both the reliability and safety for ROV have been improved.
中图分类号:
JIANG Shu-qiang1* (姜述强), JIN Hong-zhang1 (金鸿章), WEI Feng-mei2,3 (魏凤梅). Bi-criteria Optimal Fault-Tolerable Control for SY-II Remote Operated Vehicle[J]. 上海交通大学学报(英文版), 2013, 18(5): 542-548.
JIANG Shu-qiang1* (姜述强), JIN Hong-zhang1 (金鸿章), WEI Feng-mei2,3 (魏凤梅). Bi-criteria Optimal Fault-Tolerable Control for SY-II Remote Operated Vehicle[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(5): 542-548.
[1] Corradini M L, Montei`u A, Orlando G. An actuator failure tolerant control scheme for an underwater remotely operated vehicle [J]. IEEE Transactions on Control Systems Technology, 2001, 19(3): 1036-1046. [2] Xu Y R, Xiao K. Technology development of autonomous ocean vehicle [J]. Acta Automatica Sinica, 2007, 33(5): 518-521. [3] Shumsky A, Zhirabok A, Hajiyev C. Observer based fault diagnosis in thrusters of autonomous underwater vehicle [C]// 2010 Conference on Control and Fault Tolerant Systems. Nice, France: IEEE Computer Society, 2010: 11-16. [4] Boskovic J, Mehra R. A decentralized scheme for accommodation of multiple simultaneous actuator failures [C]// Proceedings of American Control Conference. Anchorage, Alaska, USA: IEEE, 2002: 5098-5103. [5] Veillette R J, Meadanic J V, Perkin W R. Design of reliable control systems [J]. IEEE Transactions on Automatic Control, 1992, 37(3): 290-304. [6] Yang L P, Zhang M J, Chu Z Z, et al. Anti-windup control and active fault tolerant control methods for autonomous underwater vehicles [J]. Journal of Harbin Engineering University, 2010, 6(31): 755-760. [7] Veillete R J. Reliable linear-quadratic statefeedback control [J]. Automatica, 1995, 31(1): 137-143. [8] Tang X J, Xie L, Ren Z, et al. Integrated design of fault tolerant control system based on fault tolerant observer [J]. Journal of Northwestern Polytechnical University, 2001, 19(2): 313-316. [9] Yu J C, Zhang A Q, Wang X H. Research on thruster fault tolerant control allocation of a 7000 m manned submarine [J]. Robot, 2006, 28(5): 519-524. [10] Edin O, Geoff R. Thruster fault diagnosis and accommodation for open-frame underwater vehicles [J]. Control Engineering Practice, 2004, 12(2): 1575-1598. [11] Podder T K, Sarkar N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy [J]. Robotics and Autonomous Systems, 2001, 34(1): 39-52. [12] Zhu D Q, Liu Q, Yang Y S. An active faulttolerant control method of unmanned underwater vehicles with continuous and uncertain faults [J]. International Journal of Advanced Robotics Systems, 2008, 5(4): 411-418. [13] Zhang Y. A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network [J]. Neurocomputing, 2006, 70(12): 513-524. [14] Sarkar N, Podder T K, Antoelli G. Fault accommodating thruster force allocation of an AUV considering thruster redundancy and saturation [J]. IEEE Transactions on Robotics and Automation, 2002, 18(2): 223-231. [15] Serdar S, Bradley J B, Ron P P. A chattering-free sliding-mode controller for underwater vehicles with fault tolerant infinity-norm thrust allocation [J]. Ocean Engineering, 2008, 35: 1647-1659. [16] Bazarra M S, Sherali H D, Shetty C M. Nonlinear programming-theory and algorithms [M]. New York: Wiley, 2006. [17] Xia Y, Wang J. A recurrent neural network for solving linear projection equations [J]. Neural Networks, 2000, 13(3): 337-350. [18] He B, Yang H. A neural network model for monotone linear asymmetric variational inequalities [J]. IEEE Transactions on Neural Networks, 2000, 11(1): 3-16. |
[1] | 赵玲玲1,郭遥2. 中国康复和辅助机器人的发展:困境与解决方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 382-390. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 569-576. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 690-698. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 739-746. |
[5] | YANG Ke (杨柯), WANG Xu-yang* (王旭阳), GE Tong (葛彤), WU Chao (吴超). Simulation Platform for the Underwater Snake-Like Robot Swimming Based on Kane’s Dynamic Model and Central Pattern Generator[J]. 上海交通大学学报(英文版), 2014, 19(3): 294-301. |
[6] | YANG Ke (杨 柯), WANG Xu-yang* (王旭阳), GE Tong (葛 彤), WU Chao (吴 超). A Dynamic Model of an Underwater Quadruped Walking Robot Using Kane’s Method[J]. 上海交通大学学报(英文版), 2014, 19(2): 160-168. |
[7] | DENG Qi (邓 奇), WANG Shi-gang* (王石刚), MO Jin-qiu (莫锦秋), LIANG Qing-hua (梁庆华). Symmetry Based Searching Process for Initial Conditions of Passive Running[J]. 上海交通大学学报(英文版), 2013, 18(6): 673-678. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 294
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 602
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||