上海交通大学学报(英文版) ›› 2012, Vol. 17 ›› Issue (4): 461-464.doi: 10.1007/s12204-012-1306-9
ZHAO Rong-da1,2 (赵荣达), ZHU Jing-chuan2 (朱景川), LAI Zhong-hong2 (来忠红), LIU Yong2 (刘勇)
ZHAO Rong-da1,2 (赵荣达), ZHU Jing-chuan2 (朱景川), LAI Zhong-hong2 (来忠红), LIU Yong2 (刘勇)
摘要: The nanometer coherent structure evolution of spinodal decomposition and ordering coexistence phase transformation in Fe-24Al alloys is investigated by the microscopic phase field kinetic model. The results show that the concentration and long-range order parameters all continuously change towards to their equilibrium values during phase transformation. With the increase of elastic interaction energy, the anisotropy along [01] or [10] elastic soft direction is more obvious and the time reaching equilibrium state is also shortened. According to the results, the formation of nanometer coherent structures during phase transformation is composed of the initial decreasing stage of order degree stage, the incubation stage, the continuous increasing stage of concentration order parameter and long-range order parameter, and the later stable stage. The spinodal decomposition and ordering is interaction; the initial ordering stage is a necessary condition of the coexistence phase transformation. The nanometer coherent structures are not found to grow during the whole phase transformation. The simulation results are in accordance with the results in experiment obtained by the aging treatment in Fe-24Al alloys.
中图分类号: