上海交通大学学报(英文版) ›› 2012, Vol. 17 ›› Issue (3): 356-359.doi: 10.1007/s12204-012-1286-9
LUO Ping1 (罗平), DONG Shi-jie1 (董仕节), XIE Zhi-xiong2 (谢志雄) MEI Zhang-qiang1 (梅张强), XIONG Hong-kang1 (熊鸿康)
出版日期:
2012-06-30
发布日期:
2012-11-15
通讯作者:
DONG Shi-jie1 (董仕节)
E-mail:dongsjsj@163.com
LUO Ping1 (罗平), DONG Shi-jie1 (董仕节), XIE Zhi-xiong2 (谢志雄) MEI Zhang-qiang1 (梅张强), XIONG Hong-kang1 (熊鸿康)
Online:
2012-06-30
Published:
2012-11-15
Contact:
DONG Shi-jie1 (董仕节)
E-mail:dongsjsj@163.com
摘要: A novel aluminum alloy which could react with water and generate hydrogen at room temperature was prepared via mechanical alloying (MA). The results shows that milling time, additives and mass ratio have a significant role in the hydrogen production rate. The highest hydrogen production rate of alloys reaches 95% of theoretical value. The velocity of hydrogen generation reaches more over 200mL/min for a gram alloy. Active materials (Ga and In) included in the aluminum alloys can be recycled and used repeatedly. The hydrolysis reaction between aluminum and H2O will take place and release a large amount of heat, which contributes to increasing the velocity of hydrogen generation. The reaction products consist of AlO(OH) and hydrogen.
中图分类号:
LUO Ping1 (罗平), DONG Shi-jie1 (董仕节), XIE Zhi-xiong2 (谢志雄). Novel Material of Hydrogen Generation[J]. 上海交通大学学报(英文版), 2012, 17(3): 356-359.
LUO Ping1 (罗平), DONG Shi-jie1 (董仕节), XIE Zhi-xiong2 (谢志雄). Novel Material of Hydrogen Generation[J]. Journal of shanghai Jiaotong University (Science), 2012, 17(3): 356-359.
[1] Wang H Z, Leung D Y C, Leung M K H, et al. A review on hydrogen production using aluminum and aluminum alloys [J]. Renewable and Sustainable Energy Reviews, 2009, 13(4): 845-853. [2] Lattin W C, Utgikar V P. Transition to hydrogen economy in the United States: A 2006 status report [J]. International Journal of Hydrogen Energy, 2007,32(15): 3230-3237. [3] Lu J, Fang Z Z, Sohn H Y. A hybridmethod for hydrogen storage and generation from water [J]. Journal of Power Sources, 2007, 172: 853-858. [4] Liu Z L, Guo B, Chan S H, et al. Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions [J]. Journal of Power Sources, 2008, 17: 6306-6311. [5] Kojima Y, Suzuki K, Fukumoto K, et al. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide [J]. International Journal of Hydrogen Energy, 2002, 27: 1029-1034. [6] Xu Q, Chandra M. Catalytic activities of nonnoble metals for hydrogen generation from aqueous ammonia-borane at room temperature [J]. Journal of Hydrogen Energy, 2006, 163: 364-370. [7] Soler L, Macanas J, Munoz M, et al. Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions [J]. International Journal of Hydrogen Energy, 2007, 32:4702-4710. [8] Fan M Q, Xu F, Sun L X. Study on the characteristic hydrolysis of milled Al-based materials for hydrogen generation [J]. International Journal of Hydrogen Energy, 2007, 32: 2809-2815. [9] Grosjeana M H, Zidounea M, Roue L, et al. Hydrogen production via hydrolysis reaction from ballmilled Mg-based materials [J]. International Journal of Hydrogen Energy, 2006, 31: 109-119. [10] Tzimas E, Filiou C, Peteves S D, et al. Hydrogen storage: State of the art and future perspective [M]. Brussels, Belgium: European Commission, Directorate-General, Joint Research Centre, 2003. [11] Kravchenko O V, Semeneko K N, Bulychey B M, et al. Activation of aluminum metal and its reaction with water [J]. Journal of Alloys and Compounds, 2005, 397: 58-62. [12] Murray J P. Aluminum production using hightemperature solar process heat [J]. Solar Energy, 1999,66(2): 133-142. |
[1] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[2] | YIN Jinpeng (尹金鹏), GAO Wenyuan* (高文元), LIU Guishan (刘贵山),HAO Hongshun (郝洪顺), YAN. Gain and Noise Figure Analysis of Er3+-Doped YAG Transparent Ceramic Microchip Amplifier[J]. 上海交通大学学报(英文版), 2017, 22(4): 406-410. |
[3] | 宋金龙,赵亦希,于忠奇,孔庆帅. 铝合金封头旋压成形变厚度毛坯设计方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1304-1311. |
[4] | LI Pan-pan1 (李盼盼), MEN Chuan-ling1* (门传玲), LI Zhen-peng1 (李振鹏),CAO Min1 (曹敏), AN. Study of Graphene Doped Zinc Oxide Nanocomposite as Transparent Conducting Oxide Electrodes for Solar Cell Applications[J]. 上海交通大学学报(英文版), 2014, 19(3): 378-384. |
[5] | GONG Liang1* (贡亮), XI Yan2 (席艳), Ma Zhe-ren1 (马喆人), LIU Cheng-liang1 (刘成良). Modeling, Identification and Simulation of DC Resistance Spot Welding Process for Aluminum Alloy 5182[J]. 上海交通大学学报(英文版), 2013, 18(1): 101-104. |
[6] | LI Da1,2 (李达), CUI Zhan-quan2 (崔占全), YANG Qing-xiang2* (杨庆祥),SUN Bing1 (孙兵), SUN. Microstructure and Property of Friction Stir Welding Joint of 7075Al and AZ31BMg[J]. 上海交通大学学报(英文版), 2012, 17(6): 679-683. |
[7] | YAN Yu1 (阎昱), WANG Hai-bo1* (王海波), WAN Min2 (万敏). Forming Path Optimization for Press Bending of Aluminum Alloy Aircraft Integral Panel[J]. 上海交通大学学报(英文版), 2012, 17(5): 635-642. |
[8] | ZHU Guo-liang1,2 (祝国梁), XIAO Yan-ping1,3 (肖艳萍), YANG Yong-xiang1,3,4 (杨永祥). Degradation Behavior of Epoxy Resins in Fibre Metal Laminates Under Thermal Conditions[J]. 上海交通大学学报(英文版), 2012, 17(3): 257-262. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 367
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||