上海交通大学学报(英文版) ›› 2012, Vol. 17 ›› Issue (3): 315-318.doi: 10.1007/s12204-012-1276-y
ZHOU Xu-dong1 (周旭东), LIU Xiang-ru2 (刘香茹), XING Jian-bin3 (型建斌)
出版日期:
2012-06-30
发布日期:
2012-11-15
通讯作者:
ZHOU Xu-dong1 (周旭东)
E-mail:syuuzhou@163.com
ZHOU Xu-dong1 (周旭东), LIU Xiang-ru2 (刘香茹), XING Jian-bin3 (型建斌)
Online:
2012-06-30
Published:
2012-11-15
Contact:
ZHOU Xu-dong1 (周旭东)
E-mail:syuuzhou@163.com
摘要: The numerical thermal mechanical simulation of radial forging process of steel H13 stepped shaft with GFM (Gesellschaft fur Fertigungstechnik undMaschinenbau) forging machine was carried out by three-dimensional finite element code DEFORM 3D. According to the effective plastic strain, the mean stress and the mean plastic strain distribution of the radial forging, the forging penetration efficiency (FPE) was studied throughout each operation. The results show that the effective plastic strain in the center of the forging is always greater than zero for the desirable larger axial drawing velocity. The mean stress in the center of the workpiece is proposed to describe hydrostatic pressure in this paper. There is compressive strain layer beneath the surface of the workpiece to be found, while there is tensile strain core in the center of the workpiece. These results could be a valuable reference for designing the similar forging operations.
中图分类号:
ZHOU Xu-dong1 (周旭东), LIU Xiang-ru2 (刘香茹), XING Jian-bin3 (型建斌). Forging Penetration Efficiency of Steel H13 Stepped Shaft Radial Forging with GFM Forging Machine[J]. 上海交通大学学报(英文版), 2012, 17(3): 315-318.
ZHOU Xu-dong1 (周旭东), LIU Xiang-ru2 (刘香茹), XING Jian-bin3 (型建斌). Forging Penetration Efficiency of Steel H13 Stepped Shaft Radial Forging with GFM Forging Machine[J]. Journal of shanghai Jiaotong University (Science), 2012, 17(3): 315-318.
[1] Altan T, Oh S, Gegel H L. Metal forming fundamental and applications [M]. Metals Park, OH: American Society for Metals, 1983. [2] Semiatin S L. Forming and forging [M]. Metals Park, OH: ASM International, 1988. [3] Ghaei A, Movahhedy M R, Karimi T A. Study of the effects of die geometry on deformation in the radial forging process [J]. Journal of Materials Processing Technology, 2005, 170(1-2): 156-163. [4] Ghaei A, Karimi T A, Movahhedy M R. A new upper bound solution for analysis of the radial forging process [J]. International Journal of Mechanical Sciences, 2006, 48(11): 1264-1272. [5] Ghaei A, Movahhedy M R. Die design for the radial forging process using 3D FEM [J]. Journal of Materials Processing Technology, 2007, 182(1-2): 534-539. [6] Sanjari M, Karimi T A, Ghaei A. Prediction of neutral plane and effects of the process parameters in radial forging using an upper bound solution [J]. Journal of Materials Processing Technology, 2007, 186(1-3): 147-153. [7] Ghaei A, Movahhedy M R, Karimi T A. Finite element modelling simulation of radial forging of tubes without mandrel [J]. Materials and Design, 2008, 29(4): 867-872. [8] Dyja H, Banaszek G, Mr′oz S, et al. Modelling of shape anvils in free hot forging of long products [J]. Journal of Materials Processing Technology, 2004, 157-158: 131-137. [9] Sahoo A K, Tiwari M K, Mileham A R. Six sigma based approach to optimize radial forging operation variables [J]. Journal of Materials Processing Technology, 2008, 202(1-3): 125-136. [10] Bapari A, Najafizadeh A, Moazeny M, et al. Simulation of radial forging conditions by third hits hot compression tests [J]. Materials Science and Engineering A, 2008, 491(1-2): 258-265. [11] Yang Shi-yong, Su Chang-qing, Wang Wei-hua. An experimental study of radial forging [J]. Equipment Environmental Engineering, 1987(3): 23-26 (in Chinese). [12] Yang S Y. Research into the GFM forging next term process [J]. Journal of Materials Processing Technology, 1991, 28 (3): 307-319. [13] Wang Zhen-fan, Hu Zong-shi. Stream function method for final forging process analysis in radial forging [J], Journal of Northeastern University, 1994,15(1): 35-39 (in Chinese). [14] Hu Zong-shi. The forging penetration efficiency of forging titanium alloy rod [J], Titanium Industry Progress, 2000(5): 15-18 (in Chinese). |
[1] | PAN Shengxuan (潘晟轩), ZOU Diyang (邹第洋), PAN Xiaogang(潘晓岗), TSAI Tsung-Yuan (蔡宗远). Effect of Attachment on Movement Control of the Central Incisor Using Invisible Orthodontics: In-Silico Finite Element Analysis[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 383-390. |
[2] | FENG Qiping (冯齐平), CHU Fengting (储沨婷), CHEN Rongjing (陈荣敬), PAN Xiaogang (潘晓岗). Effects of Mandibular Extractions with Clear Aligners: A Finite Element Analysis[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 377-382. |
[3] | JING Mengjie (荆梦杰), CUI Zhixin (崔志鑫), FU Hang (傅航), CHEN Xiaojun (陈晓军). Real-Time Deformation Simulation of Kidney Surgery Based on Virtual Reality[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 290-297. |
[4] | CHEN Fanji (陈范吉), JIANG Pingping (姜萍萍), YAN Guozheng (颜国正), WANG Wei (汪炜), MENG Yicun (孟一村). Design of Multi-Coil Wireless Power Transfer System for Gastrointestinal Capsule Robot[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 76-83. |
[5] | ZHAO Yong, JI Xiaojun, DAI Ming, QI Hongli, GAO Junkai. Analysis of Transmission Power and Efficiency of Side-Mounted Inductive Power Supply System for Metal Rotary Shafts[J]. Journal of Shanghai Jiaotong University(Science), 2020, 25(3): 273-280. |
[6] | ZHOU Min, GAO Mingze, LI Chuang, WANG Liancheng. Cargo Hold Structure Optimization of Small and Medium-Sized Duplex Stainless Steel Chemical Tankers[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 340-351. |
[7] | CEN Haitang (岑海堂), WEI Ruitao (魏瑞涛), TIAN Wenliang (田文良), HUANG Jinlei (黄金磊), NA. Finite Element Simulation Study on Blade Coating of Wind Turbine[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 223-229. |
[8] | WANG Man (王曼), ZHANG Xiaomin (张晓敏), LONG Peng (龙鹏), JIANG Yu (蒋渝). Torsion Failure Analysis of Galvanized Steel Wires for Transmission and Distribution Lines Based on ANSYS Numerical Simulation[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 632-639. |
[9] | PANG Guoliang (庞国良), CHEN Chaohe* (陈超核), SHEN Yijun (沈义俊), LIU Fuyong (刘夫永). Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 357-363. |
[10] | HAN Qingsong (韩青松), CAI Xiangwen (蔡相文), FENG Xiaojuan (冯小娟), ZHANG Qingxiang (张. Comparison of Biomechanical Properties and Hemodynamics of Three Different Vena Cava Filters[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 803-810. |
[11] | WANG Pei (王昢), LIU Hua (刘华), CHENG Xiang (程翔), ZHAO Wanliang (赵万良), LI Shaolian. Design of Braunbeck Coil for Nuclear Magnetic Resonance Gyro Magnetic Field Excitation[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 740-745. |
[12] | DENG Shungea (邓顺戈), MA Xina (马鑫), LI Xinwana,b,c* (李新碗). The Analysis of Angle Resolution of Stress Vector Sensor Based on Optical Fiber Sensing Cable for High Speed Railway Traffic[J]. sa, 2018, 23(1): 61-65. |
[13] | OU Haihuaa (欧海华), QAISER Zeeshana, KANG Lipinga (康利平), JOHNSON Shanea,b*. Effect of Skin on Finite Element Modeling of Foot and Ankle During Balanced Standing[J]. sa, 2018, 23(1): 132-137. |
[14] | WANG Wei1,2 (王威), DOU Jinzhong2 (窦锦钟), CHEN Jinjian2 (陈锦剑), WANG Jianhua2* (王建华). Numerical Analysis of the Soil Compaction Degree Under Multi-Location Tamping[J]. 上海交通大学学报(英文版), 2017, 22(4): 417-433. |
[15] | HE Junyi (何俊艺), WANG He (王贺), PENG Linfa (彭林法),YI Peiyun* (易培云), LAI Xinmin (来新民. Investigation of Springback Behavior and Process Control for Stamping of Ring-Shaped Workpiece[J]. 上海交通大学学报(英文版), 2017, 22(4): 385-394. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 392
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1749
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||