[1] Grosman B, Lewin D R. Adaptive genetic programming for steady-state process modeling [J]. Computers and Chemical Engineering, 2004, 28(12): 2779-2790.[2] Koza J R. Genetic programming: On the programming of computers by means of natural selection [M].Cambridge: MIT Press, 1992.[3] Miller J F, Job D, Vassilev V K. Principles in the evolutionary design of digital circuits. Part I [J]. Genetic Programming and Evolvable Machines, 2000, 1: 7-35.[4] Miller J F, Job D, Vassilev V K. Principles in the evolutionary design of digital circuits. Part II [J].Genetic Programming and Evolvable Machines, 2000,1: 259-288.[5] Miller J F, Thomson P. Cartesian genetic programming [C]//Proceedings of the 3rd European Conference on Genetic Programming. Edinburgh, UK: Springer-Verlag, 2000: 121-132.[6] Sykulski J K. Reducing computational effort in field optimization problems [J]. The International Journal for Computation and Mathematics in Electrical andElectronic Engineering, 2004, 23(1): 159-172.[7] Lee K J, Zhang B T. Learning robot behaviors by evolving genetic programs [C]//Proceedings of the 26th Annual Confjerence of the IEEE Industrial ElectronicsSociety. Nagoya, Japan: IEEE, 2000: 2867-2872.[8] Niehaus J, Banzhaf W. More on computational effort statistics for genetic programming [C]//Proceedings of the 6th European Conference onGenetic Programming. Berlin: Springer-Verlag, 2003:713-783.[9] Walker M, Edwards H, Messom C. Confidence intervals for computational effort comparisons [C]//Proceedings of the 10th European Conference onGenetic Programming. Valencia, Spain: Springer-Verlag, 2007: 23-32.[10] Shi X H, Liang Y C, Lee H P, et al. An improved GA and a novel PSO-GA-based hybrid algorithm [J].Information Processing Letters, 2005, 93(5): 255-261.[11] Fern´andez F, Tomassini M, Vanneschi L. Saving computational effort in genetic programming by means of plagues [C]//Proceedings of the 2003 Congresson Evolutionary Computation. Canberra, Australia:IEEE, 2003: 2042-2049.[12] Kouchakpour P, Zaknich A, Br¨aunl T. Population variation in genetic programming [J]. Information Sciences, 2007, 177(17): 3438-3452.[13] Tomassini M, Vanneschi L, Cuendet J, et al. A new technique for dynamic size populations in genetic programming [C]//Proceedings of the 2004 IEEECongress on Evolutionary Computation. Oregon, Portland:IEEE, 2004: 486-493.[14] Kouchakpour P, Zaknich A, Br¨aunl T. Dynamic population variation in genetic programming [J]. Information Sciences, 2009, 179(08): 1078-1091. |