In order to address the power demand and voltage control challenges of a multi-energy network of electricity, heat, and gas coupled within an integrated energy system is an urban park, a distributed coordination methodology that incorporates voltage deviation control is proposed. First, operation models for local equipment and power flow coupling optimization in the electricity-gas-heat network are established. Then, a multi-objective day-ahead dispatch model and a local dispatch model for each agent are proposed, aiming to minimize both the overall operating cost and the mean voltage deviation. To achieve this, an asynchronous coordination approach based on preference prior expressions and the alternating direction method of multipliers (ADMM) is employed to enable distributed scheduling. The integrated energy system composed of a 14-node power grid, a 14-node heating network, and a 15-node gas network is taken as a simulation example, and the accuracy and practicability of the multi-objective programming method proposed are verified by comparing it with the existing multi-objective solutions and analyzing the Pareto front coordinates. Additionly, under the same calculation load distribution, the computational efficiency of the asynchronous coordination method is 16.6% higher than that of the synchronous method, which verifies the effectiveness of the proposed algorithm.
Keywords:multi-agent integrated energy system (MAIES);
voltage deviation control;
asynchronous coordination optimization;
alternating direction method of multipliers (ADMM)
LU Bin, WANG Yixiao, PU Chuanqing, CHEN Yunhui, CHEN Bobo, FAN Feilong. Asynchronous Coordinated Control Method for Regional Multi-Agent Integrated Energy Systems Considering Voltage Deviation[J]. Journal of Shanghai Jiaotong University, 2025, 59(6): 758-767 doi:10.16183/j.cnki.jsjtu.2023.369
针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率.
式中:ΩT、u分别为有载调压变压器分接头位置集合、索引;αu,t为有载调压变压器(on-load tap changer,OLTC)分接头是否处于第u位置的二元决策变量;λu为分接头从0到第u位置的电压阶数;为OLTC单位时间最大允许调节量;Vtap为OLTC相邻分接头位置的电压变化;βi,t为节点i电容器投切整数变量; 为电容器组(capacitor banks,CB)最大投入数量;Qcb,i,t为电容器组无功功率;Qcbunit,i为独立电容器组单元无功功率.式(14)~(16)为OLTC运行约束,式(17)和(18)为电容器组运行约束.
区域综合能源系统(integrated community energy system, ICES)可以充分利用可再生能源、提高综合系统能源利用效率。该文专注于ICES优化调度问题。首先建立了以电为核心的综合能源系统优化调度模型,优化目标包括经济性和环保性最优准则,基于可再生能源技术、节能技术以及电能替代技术的典型设备模型,分别在采暖期和空调期建立了系统运行约束模型,以及电和冷/热负荷供需平衡约束模型;采用具有良好全局搜索能力的粒子群算法(particle swarm optimization, PSO)作为调度模型求解算法。通过具体算例,验证本模型和算法,可得到经济性和环保性目标下的综合能源系统优化调度方案,同时分析了不同目标下调度方案存在统一和矛盾的原因。
YUBo, WULiang, LUXin, et al.
Optimal dispatching method of integrated community energy system
[J]. Electric Power Construction, 2016, 37(1): 70-76.
<p> Integrated community energy system (ICES) can make full use of renewable energy and improve the energy efficiency of ICES. This paper focuses on the optimal dispatching problem of ICES. Firstly, we construct the optimal dispatching model of ICES with electricity as the core, whose optimization objectives include the economic optimum criterion and the environmental optimum criterion. Based on the typical equipment models of renewable energy technique, energy-saving technique and power substitution technique, the operation constraint model and demand balancing constraint model on electrical and cool/heat are established for the periods of heating and cooling respectively. Particle swarm optimization (PSO) algorithm with good global search capacity is applied to solve the optimal dispatching problem. The model and the algorithm are verified through a case study to produce optimal dispatching plans of ICES under the economic and environmental criterion respectively. Meanwhile, the reasons of the similarity and contradiction in the dispatching plans under different objectives are compared and analyzed.</p>
In view of the fact that the conversion of various energy forms such as electricity, gas, and heat in the regional integrated energy system (RIES) seriously affects the economy of the system operation, a mathematical model and an optimization model of RIES energy flow are established to improve the economy of the system and the absorption of renewable energy. First, the mathematical models of all kinds of energy conversion equipment in the system are established to determine the constraints of three kinds of energy transmission networks, namely electricity, natural gas, and heat. Then, taking economic operation as the primary objective, and taking into account the objective function of low carbon emissions and increasing the uptake rate of renewable energy, the RIES multi-energy flow optimization model is constructed. Finally, based on the large-scale integrated energy system, the load side demand response is introduced and the simulation model is established. The simulation results show that the introduction of demand response improves the flexibility of system scheduling, reduces the dependence of the system on energy storage equipment, and effectively reduces the energy consumption cost of users.
In view of the fact that the current integrated port energy system (IPES) considers neither the time scale difference of refrigerated containers in port scheduling nor the impact of renewable energy and load uncertainty, this paper proposes a day-ahead and intra-day two-stage rolling optimization scheduling method for a container IPES. In day-ahead scheduling, based on the temperature rise process of refrigerated containers, a port cold chain energy demand model is established, which is combined with the logistics process after the arrival of refrigerated containers. Then, the day-ahead output values of each unit in the system are obtained with the goal of the lowest operating cost. In intra-day scheduling, a two-layer rolling model is proposed to obtain the adjusted output of the port energy equipment, which considers the prediction error of shore power load and renewable energy as well as the different response speeds of cooling, heating and power. The calculation results show that the collaborative optimization scheduling of refrigerated containers and the container IPES can effectively reduce the port operation cost and carbon emissions. The two-stage day-ahead and intra-day rolling optimization scheduling can improve the economy and stability of the system.
分布式交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是求解大规模机器学习问题使用最广泛的方法之一。现有大多数分布式ADMM算法都基于完整的模型更新。随着系统规模及数据量的不断增长,节点间的通信开销逐渐成为限制分布式ADMM算法发展的瓶颈。为了减少节点间通信开销,提出了一种通信高效的通用一致性异步分布式ADMM算法(General Form Consensus Asynchronous Distributed ADMM,GFC-ADADMM ),该算法通过分析高维稀疏数据集的特性,节点间利用关联模型参数代替完整模型参数进行通信,并对模型参数进行过滤以进一步减少节点间传输负载。同时结合过时同步并行(Stale Synchronous Parallel,SSP)计算模型、allreude通信模型及混合编程模型的优势,利用异步allreduce框架并基于MPI/OpenMP混合编程模型实现GFC-ADADMM算法,提高算法计算与通信效率。文中利用GFC-ADADMM算法求解稀疏logistic回归问题,实验测试表明,与现有分布式ADMM算法相比,GFC-ADADMM算法可减少15%~63%的总运行时间,且算法收敛时可达到更高的准确率。
WANGDongxia, LEIYongmei, ZHANGZeyu.
Communication efficient asynchronous ADMM algorithm oriented to general consistency optimization
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Distributed optimal operation method of integrated energy system with multi-agents
1
2018
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
基于气网划分的电-气综合能源系统分布式低碳经济调度
1
2023
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Distributed low-carbon economic scheduling of integrated electricity and gas system based on gas network division
1
2023
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
基于ADMM算法的多主体综合能源系统分布式协同优化研究
1
2023
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Research on distributed cooperative optimization of multi-agent integrated energy system based on ADMM algorithm
1
2023
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
面向通用一致性优化的通信高效的异步ADMM算法
1
2022
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Communication efficient asynchronous ADMM algorithm oriented to general consistency optimization
1
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Asynchronous distributed alternating direction method of multipliers: Algorithm and convergence analysis
2
2016
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Asynchronous distributed ADMM for consensus optimization
1
2014
... 针对多主体综合能源系统(multi-agent integrated energy system,MAIES)的协调运行优化问题,文献[26]中建立了含热电联产机组和光伏用户群的MAIES分布式优化模型,文献[27-28]中均提出了计及电力、燃气、热力等多个能源运营商的低碳经济运行方案.上述文献均基于交替方向乘子法(alternating direction method of multipliers,ADMM)进行模型求解,ADMM将全局集中优化问题分解为各个主体本地子协调优化问题进行分布式求解.然而不同能源主体之间的功率平衡参数空间较大,ADMM惩罚参数灵敏度较高,导致算法收敛困难.同时,上述文献并未考虑各主体间计算同步的问题.由于各主体计算资源差异以及数据分布的非均衡性,各能源主体本地计算时间难以同步,迭代时差具有“木桶效应”,即所有能源主体将等待信息滞后最大的主体完成本地计算之后才进行下一轮更新,导致算法出现性能瓶颈.针对此类问题,文献[29]中提出了一种异步ADMM分布式算法,文献[30-31]中已证明异步ADMM算法具有收敛性,有效提高了分布式算法的效率. ...
Three-stage hierarchically-coordinated voltage/var control based on PV inverters considering distribution network voltage stability