上海交通大学学报, 2024, 58(8): 1156-1166 doi: 10.16183/j.cnki.jsjtu.2023.126

机械与动力工程

烟气再循环联合循环中燃气轮机温度控制方案

李柯颖1,2, 陈鲲1, 江泽鹏1, 李超1, 郭孝国1, 张士杰,1,2

1.中国科学院 工程热物理研究所,北京 100190

2.中国科学院大学 工程科学学院,北京 100049

Temperature Control Scheme for Gas Turbine of Combined Cycles with Exhaust Gas Recirculation

LI Keying1,2, CHEN Kun1, JIANG Zepeng1, LI Chao1, GUO Xiaoguo1, ZHANG Shijie,1,2

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Science,University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: 张士杰,研究员,博士生导师;E-mail:zhangsj@mail.etp.ac.cn.

责任编辑: 王一凡

收稿日期: 2023-04-11   修回日期: 2023-06-9   接受日期: 2023-06-12  

基金资助: 国家科技重大专项(2017-I-0002-0002)

Received: 2023-04-11   Revised: 2023-06-9   Accepted: 2023-06-12  

作者简介 About authors

李柯颖(1993-),博士生,从事先进燃气轮机循环研究.

摘要

在部分负荷工况下,采用余热锅炉排气再循环与压气机进口导叶调节联合应用(EGR-IGVC)策略,可有效改善燃气轮机联合循环性能.但此策略若配合联合循环电站部分负荷工况中燃气轮机常采用的等T3(透平入口温度)-T4m(透平排气温度最大允许值)温控方案,在较低负荷下会造成较大的底循环㶲损失,底循环做功能力下降明显.提出了一种更适用于EGR-IGVC策略的等T3-T4m-T4d(透平排气温度设计值)温控方案,以PG9351FA型燃气轮机联合循环为研究对象,采用能量与㶲分析方法,对比研究了EGR-IGVC策略配合两种温控方案时的联合循环部分负荷性能.研究结果表明,当环境温度为15 ℃,部分负荷率在80%负荷以上时,EGR-IGVC策略配合等T3-T4m方案效果仍为最佳;在30%~80%负荷时,与配合等T3-T4m方案相比,EGR-IGVC策略配合等T3-T4m-T4d方案可使燃气轮机效率提高0.15~0.47个百分点,余热锅炉㶲损失减少0.51%(2.15 MW)以上.研究亦表明,当环境温度在0~40 ℃间变化时,采用等T3-T4m-T4d方案总能获得更高的联合循环效率,且随环境温度上升,部分负荷效率增幅更为明显.

关键词: 燃气轮机联合循环; 烟气再循环; 压气机进口导叶; 能量与㶲分析; 部分负荷

Abstract

Under partial-load conditions, the combined application of exhaust gas recirculation of heat recovery steam generator and compressor inlet guide vane adjustment (EGR-IGVC) can effectively improve the performance of gas turbine combined cycle. However, if this strategy is combined with the temperature control scheme of constant T3(turbine inlet temperature)-T4m(maximum allowable turbine exhaust temperature), which is often adopted in gas turbine combined cycles under part-load conditions, it would cause a large bottoming cycle exergy destruction and a significant decrease in bottoming cycle power output at relatively lower loads. In this paper, a constant T3-T4m-T4d (the design value of turbine exhaust temperature) scheme suitable for the EGR-IGVC strategy is proposed, the PG9351FA gas turbine combined cycle unit is taken as the research object, and the partial-load performance of combined cycle under the two temperature control schemes is compared and investigated based on energy and exergy analysis. The results show that the combination of the EGR-IGVC strategy with the constant T3-T4m scheme is still the best at the ambient temperature of 15 ℃ and the partial-load rate of above 80%. At a load of 30%—80%, compared with the constant T3-T4m scheme, the EGR-IGVC strategy combined with the constant T3-T4m-T4d scheme can increase the gas turbine efficiency by 0.15%—0.47%, and decrease the exergy destruction of the heat recovery steam generator by more than 0.51%(2.15 MW). The results also show that adopting the constant T3-T4m-T4d scheme can always obtain higher combined cycle efficiency when the ambient temperature varies between 0 and 40 ℃. In addition, the increase in partial-load efficiency becomes more evident with the rise of ambient temperature.

Keywords: gas turbine combined cycle; exhaust gas recirculation (EGR); compressor inlet guide vane (IGV); energy and exergy analysis; partial load

PDF (3707KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李柯颖, 陈鲲, 江泽鹏, 李超, 郭孝国, 张士杰. 烟气再循环联合循环中燃气轮机温度控制方案[J]. 上海交通大学学报, 2024, 58(8): 1156-1166 doi:10.16183/j.cnki.jsjtu.2023.126

LI Keying, CHEN Kun, JIANG Zepeng, LI Chao, GUO Xiaoguo, ZHANG Shijie. Temperature Control Scheme for Gas Turbine of Combined Cycles with Exhaust Gas Recirculation[J]. Journal of Shanghai Jiaotong University, 2024, 58(8): 1156-1166 doi:10.16183/j.cnki.jsjtu.2023.126

燃气轮机联合循环(Gas Turbine Combined Cycle, GTCC)机组能够实现能量的梯级利用,具有高效率、低污染等优势.随着重型燃气轮机技术的发展,目前最先进的重型燃气轮机联合循环设计工况时效率已达60%以上[1].但随着可再生能源发电比例的提高,在实际应用中,联合循环常作为调峰机组使用[2],其年平均负荷一般仅维持在70%~80%左右[3],国内某发电厂联合循环机组在夜间的负荷仅为35%[4].而随负荷降低,联合循环效率下降明显.对于某F级燃气轮机联合循环,当负荷由100%降至40%时,循环效率会下降14个百分点以上[5].因而,研究如何改善部分负荷条件下的联合循环机组性能十分必要.

在部分负荷条件下,联合循环电站通常采用压气机进口导叶角度控制(Inlet Guide Vane Control, IGVC)策略,以防止燃气轮机透平入口温度的过快下降,从而增大底循环做功量,改善联合循环部分负荷性能.但对于重型燃气轮机而言,压气机进口导叶(IGV)角度可调节程度有限[6],且IGV角度调节会造成压气机效率下降.因此,IGVC策略对联合循环部分负荷性能的改善效果受到一定限制.近年来,烟气再循环(Exhaust Gas Recirculation, EGR)作为改善联合循环部分负荷性能的手段之一被提出[7].通过烟气再循环,压气机入口空气被加热,进入燃气轮机的空气质量流量减少,从而达到与IGV角度调节相同的效果[8].因此,EGR与IGV联合使用可有效拓宽压气机入口空气可被调节的质量流量范围.已有研究表明,在负荷下降过程中,联合循环电站先采用EGRC再采用IGVC(EGR-IGVC策略)可以获得比单纯的IGVC策略更高的循环效率[9].

目前,IGVC策略通常配合燃气轮机等T3(透平入口温度)-T4m(透平排气温度最大允许值)温控方案[10-11]使用,即在降负荷过程中,先控制燃气轮机透平入口温度维持在设计值不变(透平排气温度会随负荷降低不断升高),然后将透平排气温度维持在最大允许值不变[12].但对于EGR-IGVC策略,若仍配合常用的等T3-T4m方案,由于在更宽负荷范围内燃气轮机透平排气温度均维持在最大允许值,余热锅炉主蒸汽与再热蒸汽超温问题变得更为严重[13].虽然蒸汽超温问题可通过喷水冷却的方式来解决,但这势必会造成更大的底循环㶲损失,底循环做功能力下降明显[14].因而,EGR-IGVC策略下是否有更为合理的燃气轮机温控方案,是一个值得研究的问题.

本文以S109FA联合循环机组为研究对象,提出了一种适用于EGR-IGVC策略的燃气轮机等T3-T4m-T4d(透平排气温度设计值)温控方案.通过建立燃气-蒸汽联合循环变工况系统模型,基于能量与㶲分析方法,研究了EGR-IGVC策略配合该温控方案时的顶循环、底循环与联合循环部分负荷性能,并在不同环境温度下与传统的等T3-T4m温控方案进行了对比.

1 研究对象

采用基于烟气再循环的燃气轮机联合循环(EGR-GTCC)系统,结构如图1所示.

图1

图1   EGR-GTCC系统结构示意图

Fig.1   Schematic diagram of EGR-GTCC


研究对象为由1台PG9351FA型重型燃气轮机、1台三压再热无补燃式余热锅炉以及1台三压冷凝式蒸汽轮机[15]组成的联合循环系统.在设计工况下(ISO条件),联合循环系统的运行与性能参数[9]表1所示.表中:1 bar=100 kPa.

表1   设计工况下联合循环系统运行与性能参数

Tab.1  Operation and performance parameters of combined cycle system under design conditions

系统参数设计值
环境环境温度/℃15.00
环境压力/bar1.01
环境相对湿度/%60.00
燃气轮机入口空气质量流量/(kg·s-1)635.00
燃料质量流量/(kg·s-1)14.74
透平入口温度/℃1 328.00
燃气轮机排气温度/℃615.00
燃气轮机做功/MW253.20
余热锅炉高压蒸汽温度/℃565.00
中压蒸汽温度/℃297.00
低压蒸汽温度/℃295.00
高压蒸汽压力/bar98.80
中压蒸汽压力/bar24.00
低压蒸汽压力/bar4.00
蒸汽轮机高压入口压力/bar98.80
中压入口压力/bar24.00
低压入口压力/bar4.00
蒸汽轮机做功/MW139.80
联合循环联合循环做功/MW393.00
联合循环效率/%56.14

新窗口打开| 下载CSV


在部分负荷条件下,为避免主蒸汽与再热蒸汽超温,余热锅炉在高压过热器与再热器处添加减温器.考虑到机组运行性能与安全性,在45%负荷以上,蒸汽轮机设置为滑压运行模式,45%负荷以下设置为定压运行模式[16].

2 运行策略与温控方案

基准工况为IGVC策略配合等T3-T4m方案,研究工况为EGR-IGVC策略分别配合等T3-T4m与等T3-T4m-T4d方案.3种运行策略的描述、控制参数与各参数可调节的负荷范围如表2所示.表中:qm为燃料质量流量;EGRR为烟气再循环比例,即通入压气机的烟气质量流量与余热锅炉排气质量流量之比;Δa为IGV角度变化量.为保证机组在部分负荷下安全稳定地运行,模拟过程中EGRR不应超过40%[17-18],透平排气温度的最大值设置为 645 ℃(设计工况值+30 ℃)[9].

表2   3种运行策略的描述

Tab.2  Description of the three operation strategies

运行策略方案控制参数描述负荷范围/%
IGVC等T3-T4mΔa, qm维持透平入口温度为设计工况值82.5~100
Δa, qm维持透平排气温度为最大值82.5~43.7
qm透平入口与排气温度迅速下降43.7~30
EGR-IGVC等T3-T4mEGRR, qm维持透平入口温度为设计工况值89.1~100
EGRR, qm维持透平排气温度为最大值81.8~89.1
Δa, qm维持透平排气温度为最大值36.7~81.8
qm透平入口与排气温度迅速下降30~36.7
等T3-T4m-T4dEGRR, qm维持透平入口温度为设计工况值89.1~100
EGRR, qm维持透平排气温度为最大值81.8~89.1
qm透平入口与排气温度逐渐下降75.7~81.8
Δa, qm维持透平排气温度为设计工况值33.0~75.7
qm透平入口与排气温度迅速下降30~33.0

新窗口打开| 下载CSV


3 联合循环系统计算模型

3.1 模型建立

首先,在Gatecycle软件[19]中建立EGR-GTCC变工况系统模型,模拟计算流程如图2所示,通过调节各参数获得目标部分负荷下的联合循环出功量.然后,从软件中读出相应部分负荷条件下的联合循环运行参数,用于对联合循环部分负荷性能的评估.

图2

图2   模拟过程中的计算流程图

Fig.2   Flow chart of calculation in simulation


对于EGR-IGVC策略配合相应的温度控制方案, 在调节燃料量的同时,先增大EGRR提升压气机入口空气温度,当EGRR达到最大值,再调节Δa直至极限,以获得目标负荷下联合循环出功量的同时保证透平入口与排气温度在相应控制水平(见表2).当目标负荷、控制策略以及温度控制方案确定后,即可获得EGRR与Δa.

对于PG9351FA型燃气轮机,IGV角度的最大变化量为39°.相应地,IGV可调节的空气质量流量比例为40%[14].根据这两个参数,确定IGV对压气机入口空气质量流量的调节能力.

为评价EGR-GTCC系统性能,引入燃气轮机与底循环做功量,燃气轮机与联合循环效率进行能量分析,以及引入物流㶲,主要部件与底循环㶲损失比例进行㶲分析.基本计算公式详见文献[20],主要部件与底循环㶲损失比例计算公式如下:

χi= IiEf
χBot= EGT-out-WSTEf

式中: Ii为第i个部件㶲损失; Ef,EGT-out分别为燃料㶲与燃气轮机出口㶲;χi,χBot分别为第i个部件与底循环㶲损失比例;WST为蒸汽轮机出功量.

3.2 模型验证

在设计工况下,燃气轮机与联合循环效率的模拟结果与燃气轮机的实际性能参数[21]相比,相对误差分别小于2%与1%.在部分负荷工况下,采用IGVC策略配合等T3-T4m方案,燃气轮机与联合循环效率的模拟结果随负荷变化趋势与Yang等[14]的研究结果一致,如图3所示.较小误差的存在是对IGV角度设置的差异所致.

图3

图3   IGVC策略下燃气轮机与联合循环部分负荷效率的模拟结果与文献对比

Fig.3   Comparison between simulation and results in literature of partial-load efficiency of gas turbine and combined cycle under IGVC strategy


4 结果分析

4.1 部分负荷下EGR-GTCC系统的能量分析

在ISO工况(环境温度为15 ℃)下,30%~100%负荷范围内,3种工况下的EGRR、Δa、压气机入口空气参数与透平入口温度随负荷变化如图4~6所示.

图4

图4   烟气再循环比例与IGV角度变化量

Fig.4   Recirculation ratio of exhaust gas and variation of inlet guide vane angle


图5

图5   压气机入口空气流量与温度

Fig.5   Inlet air mass flow and temperature of compressor


图6

图6   透平入口温度

Fig.6   Inlet temperature of turbine


在81.8%负荷以上,EGR-IGVC策略配合两种方案,EGRR随负荷变化一致(见图4(a)),压气机入口空气可被加热至约43 ℃(见图5(b)).当负荷降至81.8%,EGR-IGVC策略配合等T3-T4m-T4d方案,IGV角度变化量比等T3-T4m方案更小(见图4(b)),压气机入口空气质量流量比等T3-T4m方案更大(见图5(a)).此外,从图6中还可看出,在30%~40%负荷以上,EGR-IGVC策略配合两种方案均可维持较高的透平入口温度.

在30%~90%负荷范围内,3种工况下的顶循环性能参数如表3所示.

表3   顶循环性能参数

Tab.3  Performance parameters of the topping cycle

项目策略方案压比燃气轮机做功/MW燃气轮机效率/%
90%负荷IGVC等T3-T4m14.08226.0935.05
EGR-IGVC等T3-T4m13.88223.2535.01
等T3-T4m-T4d
80%负荷IGVC等T3-T4m12.81193.2233.05
EGR-IGVC等T3-T4m12.75191.7733.45
等T3-T4m-T4d12.95192.5633.82
70%负荷IGVC等T3-T4m11.71163.9531.28
EGR-IGVC等T3-T4m11.54164.5531.88
等T3-T4m-T4d12.02166.6232.34
60%负荷IGVC等T3-T4m10.55135.6129.26
EGR-IGVC等T3-T4m10.39137.0430.00
等T3-T4m-T4d10.82138.8730.47
50%负荷IGVC等T3-T4m9.31107.7326.92
EGR-IGVC等T3-T4m9.13110.3627.94
等T3-T4m-T4d9.51111.6328.33
40%负荷IGVC等T3-T4m8.2982.6124.58
EGR-IGVC等T3-T4m7.7584.3625.53
等T3-T4m-T4d8.1185.5925.90
30%负荷IGVC等T3-T4m7.8861.3622.13
EGR-IGVC等T3-T4m6.9661.3723.08
等T3-T4m-T4d6.9862.5223.23

新窗口打开| 下载CSV


表3可见,在80%负荷以下,由于EGR减少了燃烧室㶲损失[14],改善了燃气轮机性能[22],所以EGR-IGVC策略下的燃气轮机效率明显高于IGVC策略.EGR-IGVC策略配合等T3-T4m-T4d方案时,燃气轮机效率高于等T3-T4m方案.增大EGRR与减小IGV角度,压气机特性曲线中工况点会向左下角移动,更低的压气机入口空气质量流量对应的压比也越低.等T3-T4m-T4d方案下的压气机入口空气质量流量较等T3-T4m方案更大,压比与燃气轮机做功量也更高.EGR-IGVC策略配合等T3-T4m-T4d方案时,燃气轮机效率较配合等T3-T4m方案提升0.15~0.47个百分点,较IGVC策略则可提升0.77~1.41个百分点.

图7~8给出的是燃气轮机排气参数与底循环做功量随负荷的变化情况.

图7

图7   透平排气温度与质量流量

Fig.7   Exhaust temperature and mass flow of turbine


图8

图8   底循环做功量

Fig.8   Power output of bottoming cycle


EGR-IGVC策略配合不同温控方案会改变燃气轮机排气温度与流量,从而对底循环性能造成影响.由图7可见,在81.8%负荷以下与30%~40%负荷以上时,等T3-T4m-T4d方案下的燃气轮机排气温度低于等T3-T4m方案,燃气轮机排气质量流量比等T3-T4m方案大19.36 ~25.57 kg/s.相应地,在30%~80%负荷范围内,底循环做功量比等T3-T4m方案小0.53~2.06 MW(见图8).

图9所示为3种工况下的联合循环效率及EGR-IGVC策略采用等T3-T4m-T4d与等T3-T4m方案相比的效率增幅随负荷变化情况.

图9

图9   联合循环效率及EGR-IGVC策略采用等T3-T4m-T4d方案与等T3-T4m方案相比的效率增幅

Fig.9   Efficiency of combined cycle and increase efficiency under constant T3-T4m-T4d scheme compared with those of constant T3-T4m scheme of EGR-IGVC strategy


图9可见,尽管对于EGR-IGVC策略配合等T3-T4m-T4d方案,底循环做功量更低,但在80%负荷以下,联合循环效率仍略高于等T3-T4m方案.在30%负荷下,联合循环效率可比EGR-IGVC策略配合等T3-T4m方案高0.15个百分点,比IGVC策略配合等T3-T4m方案高2.48个百分点.但仅能量分析并不能解释这一现象,需进一步进行㶲分析.

4.2 部分负荷下EGR-GTCC系统的㶲分析

㶲分析是一种定量分析方法,可以揭示热力系统产生㶲损失的位置和大小,对提高系统能源利用效率具有重要意义.以50%负荷为例,3种工况下得到的联合循环系统㶲流桑基图如图10所示.其中,燃料㶲设置为100,其余物流㶲与各部件㶲损失定义为其占燃料㶲的比例的100倍.

图10

图10   联合循环系统的㶲流桑基图(50%负荷)

Fig.10   Sankey diagram of the exergy flow for the combine cycle system (50% load)


从㶲流图中可看出,在50%负荷工况时,与IGVC策略相比,EGR-IGVC策略配合等T3-T4m方案,燃气轮机排气㶲占燃料㶲的比例可增大3.05%,但却导致余热锅炉出现更大的㶲损失.这说明EGR-IGVC策略下,配合等T3-T4m方案虽有更多㶲流进入底循环,但这部分㶲在底循环中并没有得到充分利用.而配合等T3-T4m-T4d方案则可解决这一问题,如图10(c)所示,与配合等T3-T4m方案比,余热锅炉㶲损失占燃料㶲的比例可减少0.51%(2.15 MW),底循环㶲损失比例相应可减少0.66%.

图11所示为70%与50%负荷下,EGR-IGVC策略采用两种温度控制方案时的联合循环各部件㶲损失比例.

图11

图11   EGR-IGVC策略下70%与50%负荷时的联合循环各部件㶲损失比例

Fig.11   Proportion of exergy destructions for combined cycle of various components under the EGR-IGVC strategy at plant loads of 70% and 50%


图11中可看出,随着负荷的降低,配合等T3-T4m-T4d方案时余热锅炉㶲损失减小幅度增大.因而,在80%负荷以下,底循环㶲损失降幅较大,EGR-IGVC策略配合等T3-T4m-T4d方案得到的联合循环效率就高于等T3-T4m方案.

4.3 考虑环境温度变化时EGR-GTCC系统部分负荷性能

环境温度的变化对压气机入口空气参数有较大影响,且EGR-IGVC策略的本质也是通过改变压气机入口空气参数,实现对透平入口与排气温度的控制.因而,对等T3-T4m-T4d方案的研究还必须考虑到环境温度对联合循环部分负荷性能带来的影响.以50%负荷为例,在不同环境温度下分别采用等T3-T4m方案与等T3-T4m-T4d方案,EGR-IGVC策略下得到的联合循环效率随环境温度变化如图12所示.

图12

图12   EGR-IGVC配合等T3-T4m方案与等T3-T4m-T4d方案时的联合循环效率对比

Fig.12   Comparison of efficiency of combined cycle of EGR-IGVC combined with constant T3-T4m scheme and constant T3-T4m-T4d scheme


图12中可看出,在环境温度高于0 ℃时,EGR-IGVC策略配合等T3-T4m-T4d方案下的联合循环效率明显高于等T3-T4m方案.随环境温度上升,联合循环效率增幅逐渐增大.当环境温度由 -20 ℃上升至40 ℃时,燃气轮机效率增幅由0.31个百分点增大至0.49个百分点,底循环㶲损失占燃料㶲的比例减小了2.80~3.03 MW.

5 结论

本文提出了适用于EGR-IGVC策略的燃气轮机等T3-T4m-T4d温控方案,通过能量分析与㶲分析方法,研究了EGR-IGVC策略配合该温控方案时,顶循环、底循环与联合循环的部分负荷性能,并将其与EGR-IGVC策略配合燃气轮机等T3-T4m温控方案,以及传统IGVC策略配合燃气轮机等T3-T4m温控方案进行了对比,得到的主要结论如下:

(1) 环境温度为15 ℃时,在约80%~100%负荷范围内,EGR-IGVC策略配合等T3-T4m方案仍为最佳,获得的燃气轮机与联合循环效率略高于IGVC策略.但在80%负荷以下,配合等T3-T4m则导致底循环㶲损失明显大于IGVC策略.且随负荷降低,底循环㶲损失增幅逐渐增大.

(2) 环境温度为15 ℃时,在30%~80%负荷范围内,与配合等T3-T4m方案相比,EGR-IGVC策略配合等T3-T4m-T4d方案可使燃气轮机效率进一步提高0.15~0.47个百分点,且由于底循环运行工况得到改善,高压过热器与再热器㶲损失减小,余热锅炉总㶲损失减少0.51%(2.15 MW)以上,联合循环效率更高.

(3) 随环境温度上升,与配合等T3-T4m方案相比,由于燃气轮机效率提升及底循环㶲损失减小幅度相近,EGR-IGVC策略配合等T3-T4m-T4d方案对联合循环部分负荷效率的提升效果更加明显.在50%负荷工况时,环境温度由 -20 ℃ 上升至40 ℃时,燃气轮机效率可提升0.31~0.49个百分点,底循环㶲损失可减小2.80~3.03 MW.

参考文献

VANDERVORT C.

Advancements in H class gas turbines and combined cycle power plants

[C]// Turbo Expo: Power for Land, Sea, and Air. Oslo, Norway: ASME Turbo Expo, 2018: 1-10.

[本文引用: 1]

戈志华, 马立群, 何洁, .

燃气-蒸汽联合循环热电联产机组多种运行方式负荷特性研究

[J]. 中国电机工程学报, 2020, 40(8): 2587-2597.

[本文引用: 1]

GE Zhihua, MA Liqun, HE Jie, et al.

Study on load characteristics of multiple operation modes of gas-steam combined cycle cogeneration unit

[J]. Proceedings of the CSEE, 2020, 40(8): 2587-2597.

[本文引用: 1]

于兰兰.

燃气轮机联合循环部分负荷下性能优化研究

[J]. 热力透平, 2016, 45(4): 275-278.

[本文引用: 1]

YU Lanlan.

Performance optimization of gas turbine and combined cycle under partial-load

[J]. Thermal Turbine, 2016, 45(4): 275-278.

[本文引用: 1]

苏烨, 樊印龙, 尹峰, .

联合循环燃气轮机低负荷运行模式探讨与分析

[J]. 浙江电力, 2014, 33(12): 35-37.

[本文引用: 1]

SU Ye, FAN Yinlong, YIN Feng, et al.

Discussion and analysis on low-load operation mode of combined cycle gas turbines

[J]. Zhejiang Electric Power, 2014, 33(12): 35-37.

[本文引用: 1]

LIU Z, KARIMI I A.

Simulation and optimization of a combined cycle gas turbine power plant for part-load operation

[J]. Chemical Engineering Research and Design, 2018, 131: 29-40.

[本文引用: 1]

HAO X, SUN L, CHI J, et al.

Off-design performance of 9F gas turbine based on gPROMs and BP neural network model

[J]. Journal of Thermal Science, 2022, 31(1): 261-272.

DOI:10.1007/s11630-022-1546-4      [本文引用: 1]

Gas turbines are increasingly and widely used, whose research and production reflect a country’s industrial capacity and level. Due to the changeable working environment, gas turbines usually work under the condition of simultaneous changes of ambient temperature, load and fuel. However, the current researches mainly focus on the change in single condition, and do not fully consider the simultaneous change in different conditions. On the basis of single condition, this paper further studies the dual off-design performance of gas turbines under three conditions: temperature-load, fuel-load and fuel-temperature. Firstly, the whole machine model of a gas turbine is established, in which the compressor model has the greatest impact on the performance of gas turbines. Therefore, this paper obtains a more accurate compressor model by combining the engineering modeling advantages of gPROMs and the powerful mathematical calculation ability of MATLAB neural network. Then, according to the established gas turbine model, the dual off-design performance is studied, which is mainly based on the parameter of output and efficiency. The result shows that the efficiency and power output of gas turbines will decrease with the increase of ambient temperature. With the decrease of fuel calorific value, power output and efficiency will increase. As the load decreases, the efficiency of the gas turbines will decrease, and these changes are consistent with the single off-design performance. However, when the fuel and temperature change simultaneously, only adjusting the IGV angle cannot avoid the surge when the temperature is above 30°C. At this time, it is necessary to adjust the extraction rate in order to ensure the safe and stable operation of gas turbines. Therefore, the research on dual off-design performance of gas turbines has an important significance for the peak shaving operation of gas turbines.

SAMMAK M, HO C, DAWOOD A, et al.

Improving combined cycle part load performance by using exhaust gas recirculation through an ejector

[C]// Turbo Expo: Power for Land, Sea, and Air. Virtual, Online: ASME Turbo Expo, 2018: 1-10.

[本文引用: 1]

JONSHAGEN K.

Exhaust gas recirculation to improve part load performance on combined cycle power plants

[C]// Turbo Expo: Power for Land, Sea, and Air. Seoul, South Korea: ASME Turbo Expo, 2016: 1-9.

[本文引用: 1]

LIU Z, KARIMI I A.

New operating strategy for a combined cycle gas turbine power plant

[J]. Energy Conversion and Management, 2018, 171: 1675-1684.

[本文引用: 3]

FAN K, YANG C, XIE Z, et al.

Load-regulation characteristics of gas turbine combined cycle power system controlled with compressor inlet air heating

[J]. Applied Thermal Engineering, 2021, 196: 117285.

[本文引用: 1]

陈金伟, 陈梅珊, 梅姣姣, .

考虑环境温度和功率的燃气轮机进口可转导叶控制策略优化

[J]. 上海交通大学学报, 2016, 50(4): 540-544.

[本文引用: 1]

CHEN Jinwei, CHEN Meishan, MEI Jiaojiao, et al.

Optimization of IGV temperature control strategy for gas turbine considering ambient temperature and load

[J]. Journal of Shanghai Jiao Tong University, 2016, 50(4): 540-544.

[本文引用: 1]

王振, 段立强.

不同运行策略下燃气轮机联合循环变工况热经济性能分析

[J]. 中国电机工程学报, 2021, 41(14): 4912-4922.

[本文引用: 1]

WANG Zhen, DUAN Liqiang.

Off-design thermoeconomic performance analysis of gas turbine combined cycle under different operation strategies

[J]. Proceedings of the CSEE, 2021, 41(14): 4912-4922.

[本文引用: 1]

杨朝阳.

锅炉主、再热蒸汽超温分析及控制措施

[J]. 科技视界, 2013, 21: 148-149.

[本文引用: 1]

YANG Chaoyang.

Lord, reheat steam boiler overheating analysis and control measures

[J]. Science & Technology Vision, 2013, 21: 148-149.

[本文引用: 1]

YANG Y, BAI Z, ZHANG G, et al.

Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating

[J]. Energy, 2019, 178: 386-399.

[本文引用: 4]

黄超群, 王波, 张士杰, .

F/G/H级重型燃气轮机联合循环底循环热力性能简明估算模型

[J]. 中国电机工程学报, 2019, 39(21): 6320-6328.

[本文引用: 1]

HUANG Chaoqun, WANG Bo, ZHANG Shijie, et al.

Concise estimation model of thermodynamic performance for bottom cycle of F/G/H-class heavy duty gas turbine combined cycle

[J]. Proceedings of the CSEE, 2019, 39(21): 6320-6328.

[本文引用: 1]

郑炯智, 张国强, 许彦平, .

顶底循环参数对燃气-蒸汽联合循环全工况性能影响分析

[J]. 中国电机工程学报, 2016, 36(23): 6418-6431.

[本文引用: 1]

ZHENG Jiongzhi, ZHANG Guoqiang, XU Yanping, et al.

Analysis of topping and bottoming cycle parameters on the performance of the combined cycle at design/off-design condition

[J]. Proceedings of the CSEE, 2016, 36(23): 6418-6431.

[本文引用: 1]

SANCHEZ J P, MARTINEZ J E A, CZERWIEC Z M, et al.

Theoretical assessment of integration of CCS in the Mexican electrical sector

[J]. Energy, 2019, 167: 828-840.

[本文引用: 1]

JONSHAGEN K, SIPÖCZ N, GENRUP M.

A novel approach of retrofitting a combined cycle with post combustion CO2 capture

[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(1): 1-7.

[本文引用: 1]

GE. Gatecycle User’s Guide, Version 5.32.0r[M]. USA: GE Enter Software LLC, 1989.

[本文引用: 1]

LI K, CHI J,

ZHANG S, Energy and exergy analysis of gas turbine combined cycle with exhaust gas recirculation under part-load conditions

[J]. Journal of Mechanical Science and Technology, 2023, 37: 2149-2160.

[本文引用: 1]

CRABOS DJTO.

GE power systems gas turbine and combined cycle products

[EB/OL]. (2003-02-01) [2023-07-01]. https://courses.washington.edu/mengr430/au07/handouts/ge/product_des.pdf.

URL     [本文引用: 1]

HACHEM J, SCHUHLER T, ORHON D, et al.

Exhaust gas recirculation applied to single-shaft gas turbines: An energy and exergy approach

[J]. Energy, 2022, 238: 121656.

[本文引用: 1]

/