添加钽对电弧熔丝增材制备镍钛形状记忆合金组织性能的影响
Effect of Adding Tantalum on Microstructure and Properties of NiTi Shape Memory Alloy Manufactured by Wire Arc Additive Manufacturing
通讯作者: 敖三三,副教授;E-mail:ao33@tju.edu.cn.
责任编辑: 李博文
收稿日期: 2022-07-1 修回日期: 2022-07-22 接受日期: 2022-07-27
基金资助: |
|
Received: 2022-07-1 Revised: 2022-07-22 Accepted: 2022-07-27
作者简介 About authors
左新德(1996-),硕士生,从事NiTi合金电弧增材制造工艺及其组织性能研究.
NiTiTa三元形状记忆合金(SMAs)是潜在的生物医用材料,且电弧增材制造(WAAM)技术已经广泛应用于NiTi合金的研究中,研究Ta添加对WAAM的NiTi合金组织性能的影响具有重要意义.利用WAAM技术分别制造了5层NiTi合金和NiTiTa合金薄壁构件,系统研究了Ta添加对NiTi合金的微观组织、相变行为、力学性能以及抗腐蚀能力的影响.结果表明,与NiTi合金相比, NiTiTa合金的晶粒显著细化,析出相由NiTi合金中的Ni3Ti转变为 Ni(Ti, Ta)2.此外,其相变温度显著提高,导致了室温下的组织由完全奥氏体相(B2)转变为奥氏体(B2)和马氏体(B19’)的混合相.拉伸试验结果表明,NiTiTa合金试样相较于NiTi合金试样的抗拉强度提升了9.5%,但延伸率下降了6.8%.极化曲线结果表明,NiTiTa合金具有更高的自腐蚀电位和更小的腐蚀电流密度,抗腐蚀能力显著提升.本研究为促进WAAM制备的NiTiTa合金及其在生物医疗领域的应用奠定了研究基础.
关键词:
NiTiTa ternary shape memory alloy is a potential biomedical material, and wire arc additive manufacturing (WAAM) technology has been widely used in the research of NiTi alloys. It is of great significance to study the effect of Ta addition on the microstructure and properties of WAAM NiTi alloys. In this paper, 5-layer NiTi and NiTiTa alloy walls were fabricated by WAAM technology, and the effects of Ta addition on the microstructure, phase transformation behavior, mechanical properties and corrosion resistance of NiTi alloys were systematically studied. The results show that the grains of the NiTiTa alloy are remarkably refined compared with NiTi alloys, and the precipitation phase of NiTiTa alloy changes from Ni3Ti of NiTi alloy to Ni(Ti, Ta)2. In addition, the phase transition temperature of the NiTiTa alloy is significantly increased, which makes the phase at room temperature change from the complete austenite phase (B2) to a mixed phase of austenite (B2) and martensite (B19'). Tensile tests show that the tensile strength of NiTiTa samples is increased by 9.5% compared with NiTi samples, but the elongation is decreased by 6.8%. The polarization curve results show that the NiTiTa alloy has a higher corrosion potential and a lower corrosion current density, which means a significantly improved corrosion resistance. This paper lays a theoretical foundation for promoting the application of NiTiTa alloys fabricated by WAAM technology in the biomedical field.
Keywords:
本文引用格式
左新德, 陈懿, 李洋, 罗震, 敖三三.
ZUO Xinde, CHEN Yi, LI Yang, LUO Zhen, AO Sansan.
本研究在WAAM技术的基础上,采用预铺Ta箔的方式将Ta添加到WAAM的NiTi合金中.在相同的工艺参数下,分别沉积NiTi和NiTiTa合金薄壁构件,并利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、电子衍射背散射(EBSD)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)以及X射线光电子能谱(XPS)进行拉伸试验和电化学试验,系统地研究了添加Ta对于WAAM的NiTi合金的微观组织、相变行为、力学性能以及抗腐蚀能力的影响.这项工作为促进WAAM的NiTiTa合金在生物医疗领域的应用奠定了研究基础.
1 试验方法
本试验原理如图1所示,采用直流钨极氩弧焊(TIG)电源,NiTi(Ni摩尔分数为50.8%)焊丝的直径为1.0 mm,Ta箔(Ta质量分数为99.95%)的厚度和宽度分别为0.1和1 mm.沉积电流为110 A,送丝速度为800 mm/min,扫描速度为135 mm/min,焊枪和拖罩保护气采用纯度为99.999%的氩气,流量均为15 L/min.在尺寸为200 mm×100 mm×30 mm 的NiTi基板上分别沉积5层NiTi和 NiTiTa WAAM薄壁构件.
图1
利用线切割将两组试样沿着熔敷方向(Y-Z截面)切开,采用砂纸打磨和机械抛光,用混合酸性腐蚀液(HF∶HNO3∶H2O=3∶5∶100)腐蚀抛光面,使用OM(Olympus Corp SZX12)、SEM(QUANTA FEG 250)、EDS(Oxfords Instruments INCAx-act)和XRD(Bruker D8 Advanced)等设备分析试样的微观组织以及化学成分.通过DSC(NETZSCH DSC214 polyma)测试试样的相变温度,温度范围为 -80~200 ℃,加热和冷却速度设定为10 ℃/min.
利用线切割在试样的X-Z截面获得拉伸试样,尺寸如图2所示,采用微机控制电子式万能试验机(WDW-100)在室温下进行拉伸测试,拉伸速率为0.1 mm/min,并且采用SEM观察断口形貌.使用三电极电化学测试系统(PARSTAT 2273)在恒温37 ℃的人体模拟体液(HBSS)中测量两组试样的极化曲线,电位范围为-1 000~1 000 mV,扫描速度为0.5 mV/s,测试前将试样提前30 min浸泡在溶液中以达到稳定状态.采用XPS测试电化学腐蚀后试样表面钝化膜的元素成分以及价态.
图2
2 结果分析与讨论
2.1 显微组织
2.1.1 金相组织和晶粒尺寸
示为NiTi和NiTiTa WAAM薄壁的宏观形貌.可以看出两组构件的表面成形均匀,无明显飞溅、裂纹等宏观缺陷,并且主体呈现银白色的金属光泽,证明了气体保护具有良好效果. NiTi合金在高温环境下容易发生氧化,生成的氧化物严重影响材料的机械性能[9],因此惰性气体保护对于WAAM的NiTi合金构件的质量至关重要.
图3
图4
图4
NiTi和NiTiTa WAAM试样 Y-Z截面宏观形貌以及不同区域的金相组织
Fig.4
Macromorphology of Y-Z section of NiTi and NiTiTa WAAM samples and metallographic structure in different regions
与NiTi WAAM试样相比,NiTiTa WAAM试样的晶粒尺寸显著减小.采用截线法测量了NiTi和 NiTiTa WAAM试样的等轴晶粒尺寸和中间区域的柱状晶间距,结果如图5所示.
图5
图5
NiTi和NiTiTa WAAM试样的等轴晶粒直径以及柱状晶间距尺寸
Fig.5
Equiaxed grain diameter and columnar grain spacing of NiTi and NiTiTa WAAM samples
NiTi WAAM试样的等轴晶直径和柱状晶间距分别为5.9和7.7 μm,而NiTiTa WAAM试样为3.3和3.5 μm,分别降低了44.1%和54.5%,这表明Ta的添加显著细化了NiTi WAAM试样的晶粒.根据霍尔-佩奇公式,细化的晶粒可以提高NiTi合金增材构件的组织均匀性,同时对强度和韧性产生积极影响[14].
2.1.2 基体和析出相成分
图6(a)和图6(b)分别显示了NiTi和NiTiTa WAAM试样等轴晶区的SEM图,对应区域的EDS元素含量如表1所示.对于NiTi WAAM试样,点①~③的EDS结果表明晶粒内部Ti和Ni元素平均含量(以摩尔分数计)分别为49.16%、50.84%,这与富Ni的NiTi焊丝的成分特征保持一致.此外,从图6(a)中还可以观察到晶界处分布着不规则的析出相,点④~⑥的EDS结果显示其Ti和Ni元素平均含量分别为27.09%、72.91%,Ni/Ti值接近3∶1,表明NiTi WAAM试样的析出相主要为Ni3Ti.对于NiTiTa WAAM试样,点⑦~⑨的EDS结果表明晶粒内部Ti、Ni和Ta元素平均含量分别为48.55%、49.10%、2.35%,其中Ta的含量低于Ta在等原子比 NiTi 合金中的最大固溶度 4%[15],这表明NiTiTa 合金的基体是由NiTi含少量Ta 的固溶体构成,Ta固溶在基体中会引发晶格畸变而产生固溶强化作用[16],对NiTiTa的力学性能产生积极影响.此外,大量纳米级的椭圆形析出相分布在NiTiTa合金的晶界周围,点⑩~12的EDS结果表明,析出相的Ti、Ni和Ta元素平均含量分别为62.06%、34.78%、3.16%,Ni/Ti值接近1∶2,表明NiTiTa WAAM试样的析出相为Ni(Ti, Ta)2.
图6
图6
NiTi和NiTiTa沉积试样顶部等轴晶区里SEM 图
Fig.6
SEM images of equiaxed region at the top of NiTi and NiTiTa as-deposited samples
表1 NiTi和NiTiTa沉积试样的EDS元素成分
Tab.1
编号 | Ti含量 | Ni含量 | Ta含量 |
---|---|---|---|
1 | 49.16 | 50.84 | |
2 | 49.12 | 50.88 | |
3 | 49.19 | 50.81 | |
4 | 27.61 | 72.39 | |
5 | 27.66 | 71.34 | |
6 | 25.99 | 74.01 | |
7 | 48.50 | 49.08 | 2.42 |
8 | 48.63 | 49.05 | 2.32 |
9 | 48.51 | 49.18 | 2.31 |
10 | 62.41 | 34.37 | 3.22 |
11 | 61.39 | 35.61 | 3.00 |
12 | 62.37 | 34.36 | 3.27 |
注:“空白”表示量不存在.
显然,Ta的添加改变了WAAM的NiTi合金析出相的种类.NiTi WAAM试样由于采用了富Ni的焊丝,过等原子比NiTi合金会在冷却过程中发生有限脱溶[17],生成富Ni析出相Ni3Ti.对于NiTiTa WAAM 试样, Ta和Ti位于相邻族, Ta和Ti的原子半径分别为0.209、0.2 nm,电负性均为1.5,具有相似的物理特性,因此在第二相析出过程中,Ta会起到和Ti类似的作用,并且NiTiTa WAAM合金中(Ta+Ti)的原子含量大于Ni,出现类似于亚等原子比NiTi合金的成分特征,在冷却过程中会发生有限脱溶[18],从而生成NiTi2,并且Ta会部分取代Ti的位置,最终导致了Ni(Ti, Ta)2的析出[6].而 NiTi 合金中的富Ti析出相已经被证实可以钉扎住晶界,阻碍晶粒的进一步长大[19],这解释了Ta添加使得WAAM的NiTi合金中出现晶粒显著细化的现象.
2.2 相变行为
通过DSC分析得到的NiTi和NiTiTa WAAM试样的相变特征曲线如图7所示.从图7中提取到两组试样的奥氏体转变开始温度As、奥氏体转变结束温度Af、马氏体转变开始温度Ms、马氏体相变结束温度Mf如表2所示.可以看出,NiTi和NiTiTa WAAM试样的马氏体(逆)相变特征曲线区别明显. Ta的添加使得NiTi合金的相变温度显著提升,其中As、Af、Ms和Mf分别提升了82.94、62.49、29.13、55.67 ℃.这也导致了在室温25 ℃下NiTi WAAM试样处在完全奥氏体(B2)温度区间,而NiTiTa WAAM试样处在马氏体(B19’)和奥氏体(B2)两相混合温度区间.此外,NiTi WAAM试样的相变滞后(Af-Ms)为4.61 ℃,而 NiTiTa WAAM试样为37.17 ℃, 这表明 Ta 的添加使得NiTi WAAM沉积试样的相变滞后增加.
图7
图7
NiTi和NiTiTa 沉积试样DSC曲线
Fig.7
DSC curves of NiTi and NiTiTa as-deposited samples
表2 NiTi和NiTiTa沉积试样相变温度
Tab.2
试样 | As | Af | Ms | Mf |
---|---|---|---|---|
NiTi WAAM | -65.43 | 11.77 | 7.16 | -67.13 |
NiTiTa WAAM | 17.51 | 74.26 | 37.09 | -11.46 |
NiTi和NiTiTa WAAM试样的相变行为的差异与晶粒尺寸、析出相和Ta的固溶等因素有关.首先,如前所述,NiTiTa WAAM试样相比较于NiTi,晶粒更加细小,而晶粒尺寸的差异对NiTi合金的马氏体和奥氏体相变行为产生影响[20].其次,NiTi WAAM试样大量析出富Ni析出相,会降低基体中Ni/Ti含量比,而NiTiTa WAAM试样大量析出富Ti析出相,会增加基体中的Ni/Ti含量比.最后, 固溶进NiTi基体中的Ta会对NiTi SMAs的相变行为产生显著影响,但是目前关于第三组元影响NiTi SMAs相变温度的机制尚不明确[21].Ma等[17]早期的研究发现NiTiTa三元合金中的Ni/Ti含量比随着Ta含量的增加而降低,这也导致了相变温度的增加,但是没有对其内在机理进行进一步探讨; Zarinejad等[22]提出SMAs的相变温度和平均价电子浓度(Cv)相关,Cai等[23]也进一步证实了在不同成分的NiTiTa合金中,相变温度也总是随着Cv值的增加而降低.这项研究也证实了通过改变第三组元的种类以及含量来调控NiTi形状记忆合金相变温度的可行性,为NiTi形状合金的增材制造研究提供了一个新的方向.
图8
图8
NiTi和NiTiTa 沉积试样的X射线衍射图
Fig.8
X-ray diffraction patterns of NiTi and NiTiTa as-deposited samples
2.3 力学性能
图9
图9
NiTi和NiTiTa 沉积试样的室温拉伸曲线
Fig.9
Tensile curves at room temperature of NiTi and NiTiTa as-deposited samples
表3 NiTi和NiTiTa 沉积试样的抗拉强度和延伸率
Tab.3
试样 | 强度/ MPa | 延伸率/% |
---|---|---|
NiTi WAAM | 511.6 | 8.52 |
NiTiTa WAAM | 558.1 | 7.94 |
图10
图10
NiTi和NiTiTa WAAM拉伸试样的断口形貌
Fig.10
Fracture morphology of NiTi and NiTiTa WAAM tensile samples
2.4 电化学腐蚀行为
图11
图11
NiTi和NiTiTa WAAM试样极化曲线
Fig.11
Polarization curves at room temperature of NiTi and NiTiTa WAAM samples
表4 NiTi和NiTiTa WAAM试样的自腐蚀电位和腐蚀电流密度
Tab.4
试样 | Ecorr/V (vs. SCE) | icorr/(A·cm-2) |
---|---|---|
NiTi WAAM | -0.55 | 1.90×10-6 |
NiTiTa WAAM | -0.44 | 4.20×10-7 |
图12为利用XPS对NiTiTa WAAM合金的电化学腐蚀试样表面的钝化膜进行元素成分和价态分析.从图12(a)中可以看出,除了残留的来自 HBSS 溶液中的少量Ca、Mg和P元素外,样品表面的钝化膜主要由O、Ti和Ta三种元素构成.图12(b)和12(c)分别是Ti 2p和Ta 4f 的高分辨峰,结果表明NiTiTa WAAM试样表面生成了TiO2以及Ta2O5两种氧化物.图12(d)中的O 1s的高分辨峰可以拟合为529.7和527.8 eV,进一步证明NiTiTa WAAM合金的钝化膜主要由Ti2O和少量的Ta2O5组成.显然,不同于NiTi合金的抗腐蚀能力主要依赖于TiO2氧化膜的研究[24], Ta的添加使得NiTiTa 合金在腐蚀过程中表面生成了致密的TiO2-Ta2O5钝化膜,有助于提升氧化膜的电阻率和厚度[25],使得抗腐蚀性能显著提升.
图12
图12
NiTiTa WAAM电化学腐蚀试样的XPS全谱及高分辨率图谱
Fig.12
XPS spectra and high resolution spectra of NiTiTa WAAM sample after electrochemical corrosion
3 结语
首次在NiTi SMAs WAAM过程中添加Ta沉积了NiTiTa 合金薄壁构件,并系统研究了Ta的添加对于WAAM和NiTi合金的微观组织、相变行为、力学性能以及抗腐蚀性能的影响,得出以下主要结论:Ta的添加显著细化了WAAM的NiTi合金的晶粒,其中等轴晶粒直径减小了44.1%,柱状晶间距减小了 54.5%.EDS分析结果表明,NiTiTa WAAM试样的基体由NiTi含Ta的固溶体构成,析出相由NiTi WAAM试样富Ni的Ni3Ti转变为富Ti的Ni(Ti, Ta)2.此外,Ta的添加使得NiTi合金的相变温度显著提升,这也导致了室温下的组织由完全奥氏体相(B2)变为马氏体(B19’)和奥氏体(B2)的混合相.拉伸试验结果表明,NiTiTa WAAM试样相较于NiTi WAAM试样,抗拉强度提升了9.1%,而延伸率下降了6.8%,抗拉强度的提升主要与细晶强化作用和Ta在NiTi基体中固溶强化作用相关,延伸率的降低主要与脆性 Ni(Ti, Ta)2 的析出相关.电化学腐蚀试验结果表明Ta的添加使得WAAM的NiTi合金的腐蚀电位提升,自腐蚀电流密度显著下降,抗腐蚀能力的提升主要与电化学腐蚀过程中表面生成的TiO2-Ta2O5的钝化膜有关.
参考文献
A review on wire and arc additive manufacturing of titanium alloy
[J]. ,DOI:10.1016/j.jmapro.2021.08.018 URL [本文引用: 1]
双脉冲电弧增材制造数值模拟与晶粒细化机理
[J]. ,DOI:10.12073/j.hjxb.2019400114 [本文引用: 1]
电弧增材制造具有成本低和效率高等优点,然而其晶粒细化的研究鲜有报道. 使用自行研制的熔化极气体保护焊电源实施了双脉冲电弧增材制造试验,通过数值模拟预测了晶粒细化现象,试验结果验证了双脉冲电弧的晶粒细化作用. 结果表明,由于熔池的膨胀,熔池尾部出现了重熔化现象. 在与单脉冲电弧热输入相同时,重熔化现象导致双脉冲电弧能够产生更高的冷却速度,并且细化晶粒. 因此,可以通过改变脉冲参数而不是传统地改变热输入来细化晶粒.
Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing
[J]. ,DOI:10.12073/j.hjxb.2019400114 [本文引用: 1]
Arc additive manufacturing has the advantages of low cost and high efficiency. However, there are few reports on grain refinement. Double pulsed arc additive manufacturing experiments were carried out by using self-developed gas metal arc welding equipment, grain refinement phenomenon was predicted by using the cooling rate; experimental results also verified the grain refinement phenomenon. Results indicated that remelting phenomenon occurred near the trailing edge due to the expansion of the molten pool. Therefore, double pulsed arc features higher cooling rate and finer grain than conventional single pulsed arc under same heat input. Grain refinement could be achieved by changing pulsing parameters instead of conventionally changing heat input.
Microstructure and transformation behavior of Ni50Ti50-xTax alloys
[J]. ,DOI:10.4028/www.scientific.net/MSF URL [本文引用: 1]
Effects of tantalum on microstructure and mechanical properties of cast IN617 alloy
[J]. ,DOI:10.1016/j.msea.2017.09.014 URL [本文引用: 1]
Precipitation processes in near-equiatomic TiNi shape memory alloys
[J]. ,DOI:10.1007/BF02650086 URL [本文引用: 2]
On the Ti2Ni precipitates and Guinier-Preston zones in Ti-rich TiNi thin films
[J]. ,DOI:10.1016/S1359-6454(03)00124-1 URL [本文引用: 1]
Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3
[J]. ,DOI:10.1016/j.addma.2020.101150 URL [本文引用: 1]
Functional fatigue behavior of NiTi-Cu dissimilar laser welds
[J]. ,
Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt and Ni-Ti-Hf shape memory alloys
[J]. ,DOI:10.1016/j.physb.2011.12.077 URL [本文引用: 1]
NiTi基形状记忆合金弹热效应及其应用研究进展
[J]. ,DOI:10.11868/j.issn.1001-4381.2020.000780 [本文引用: 1]
NiTi合金作为性能最优异的形状记忆合金之一,已经广泛应用于航空航天、电子、建筑、生物医学等领域。近年来,NiTi基合金极佳的力学性能、巨大的弹热效应和良好的机械加工性使其在弹热制冷领域引起了广泛关注。然而,传统NiTi二元合金超弹性应力滞后大,超弹性和弹热效应循环稳定性差,达不到实际应用所需的长期服役要求。本文介绍了NiTi基合金的弹热效应研究进展,从掺杂合金元素、热机械处理、改变制备方法等角度综述了近几年NiTi基合金弹热效应改进优化的研究进展,同时本文也简要介绍了已经开发的基于NiTi基合金的弹热装置或原型机。但是目前NiTi基合金弹热材料的研究和原型机的开发仍处于实验阶段,实现其商业化应用需要进一步深入研究和优化,未来前者研究重点将集中在材料小型化、合金化或特殊处理及改变循环方式等方面,后者也将从提高热量传输效率、加强热量交换、减小摩擦等损耗、改进机械负载和循环模式等方面不断优化和完善。
Research progress in elastocaloric effect and its application of NiTi-based shape memory alloys
[J]. ,DOI:10.11868/j.issn.1001-4381.2020.000780 [本文引用: 1]
NiTi-based shape memory alloys (SMAs) are one of the SMAs with most outstanding properties, and have been widely applied in aviation, space, electronics, construction, biomedicine and other fields. In recent years, the elastocaloric refrigeration based on elastocaloric effect (eCE) of NiTi alloys has attracted increasing attentions since their excellent mechanical properties, huge elastocaloric strength and good machinability. However, conventional binary NiTi alloys cannot meet the requirements of long-life service since their large superelastic stress hysteresis and poor cyclic stability of superelasticity and eCE. In this paper, the research progress of eCE for NiTi-based alloys was reviewed. The effect of doping alloying element, thermomechanical treatment and novel processing techniques on eCE of NiTi-based alloys were surnmarized. In addition, the developed elastocaloric devices or prototypes based on NiTi-based alloys were also briefly introduced. However, the current researches on NiTi-based elastocaloric materials and the development of prototypes are still in the experimental stage. To realize their commercial application requires further in-depth research and optimization. In the future, the research priorities for the former will concentrate on material miniaturization, alloying or applying special treatment as well as changing circulation methods and so on. On the other hand, the research priorities for the latter will focus on improving heat transfer efficiency, strengthening heat exchange, reducing friction and other losses, and improving mechanical loadings as well as circulation modes.
Hot rolling effects on the microstructure and chemical properties of NiTiTa alloys
[J]. ,DOI:10.1007/s11665-019-04473-6 [本文引用: 1]
Nickel impact on human health: An intrinsic disorder perspective
[J]. ,DOI:10.1016/j.bbapap.2016.09.008 URL [本文引用: 1]
Effect of Ta on microstructures and mechanical properties of NiTi alloys
[J]. ,DOI:10.1007/s40830-019-00228-3 [本文引用: 1]
Microstructure observation of Ni50Ti45Ta5 shape memory alloy
[J]. ,DOI:10.4028/www.scientific.net/AMR.391-392 URL [本文引用: 3]
Tantalum coated NiTi alloy by PIIID for biomedical application
[J]. ,DOI:10.1016/j.surfcoat.2012.11.002 URL [本文引用: 1]
Wire arc additive manufacturing: A comprehensive review and research directions
[J]. ,DOI:10.1007/s11665-021-05871-5 [本文引用: 1]
电弧增材制造NiTi形状记忆合金成形与性能
[J]. ,DOI:10.3901/JME.2020.08.099 [本文引用: 4]
基于电弧增材制造(Wire arc additive manufacturing,WAAM)技术,以NiTi丝(Ni 50.50 at.%)为堆积材料制造形状记忆合金薄壁构件,研究其组织成分、相变特征和力学性能。结果表明,由于不同的热循环条件,沿试样高度方向上每道沉积层微观结构不同,第一沉积层为较大的等轴晶,随着热量累积,晶粒生长趋向为更细小的等轴形态,层间为柱状晶。室温下,试样是奥氏体相(Ni 51.10 at.%),与丝材相比,电弧增材制造的构件硬度较高且具有更宽的温度变化范围和相变滞后现象。试样拉伸强度约为611.30 MPa,延伸率约为19.50%,具有较好的断裂韧性。试样在第一次加载-卸载循环时塑性应变仅为1.01%,8个循环后塑性应变趋于稳定,约为2.68%。
Forming properties of wire arc additive manufactured NiTi shape memory alloy
[J]. ,DOI:10.3901/JME.2020.08.099 [本文引用: 4]
Wire arc additive manufacturing (WAAM) is used for fabrication of NiTi parts using a dedicated Ni-rich(50.50 at.%) NiTi wire as the feedstock material. The microstructure, phase transformation characteristics and mechanical properties of the as-built parts are investigated. Experimental results show that the microstructure in each deposition layer is different as a result of the different thermal cycle conditions. Along the part height,the first deposited layer is larger equiaxed grains. As the heat input gradually accumulates, the grain growth tends to the finer equiaxed form, and there are columnar grains between two deposited layers. The as-built parts are completely austenite phase at room temperature. The Ni content of deposited layers which have higher hardness, wider transformational range and hysteresis compared to the as-received NiTi wire is 51.10 at.%. The tensile strenght of the as-built parts is of about 611.30 MPa with a corresponding fracture strain of 19.50%. The fracture surface with dimple fracture had good ductility. Additionally, it can be seen that the WAAM specimens exhibit good superelastic properties, evidenced by a low irrecoverable strain of 1.01% upon unloading in the first cycle. The plastic strain increases during the first 8 cycles, and reaches near a constant value of 2.68%.
Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons
[J]. ,DOI:10.1002/adfm.v18:18 URL [本文引用: 1]
Effect of Ni/Ti ratio and Ta content on NiTiTa alloys
[J]. ,DOI:10.1007/s40830-021-00350-1 [本文引用: 1]
Corrosion behaviour of NiTi alloy
[J]. ,DOI:10.1016/j.electacta.2008.08.001 URL [本文引用: 1]
Sol-gel derived Ta-containing TiO2 films on surface roughened NiTi alloy
[J]. ,DOI:10.1007/s12598-013-0208-9 URL [本文引用: 1]
Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing
[J]. ,DOI:10.1016/j.jallcom.2020.156851 URL [本文引用: 1]
Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties
[J]. ,DOI:10.1016/j.addma.2020.101051 URL [本文引用: 1]
Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing
[J]. ,DOI:10.1016/j.jallcom.2021.162193 URL [本文引用: 1]
/
〈 | 〉 |