上海交通大学学报, 2023, 57(6): 690-699 doi: 10.16183/j.cnki.jsjtu.2021.032

船舶海洋与建筑工程

钢管桩-注浆加固盾构换刀区稳定性分析

戴治恒1, 张孟喜,1, 魏辉2, 顾婕1, 张晓清1

1.上海大学 力学与工程科学学院,上海 200444

2.中铁二十局集团 第五工程有限公司,昆明 650200

Stability Analysis of Shield Cutter Replacement Ground Reinforced with Steel Pipe Pile-Grouting

DAI Zhiheng1, ZHANG Mengxi,1, WEI Hui2, GU Jie1, ZHANG Xiaoqing1

1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China

2. 5th Engineering Co., Ltd., China Railway 20th Bureau Group, Kunming 650200, China

通讯作者: 张孟喜,教授,博士生导师,电话(Tel.): 021-66133265;E-mail:mxzhang@i.shu.edu.cn.

责任编辑: 李博文

收稿日期: 2021-01-27   修回日期: 2021-04-19   接受日期: 2021-05-4  

基金资助: 国家自然科学基金面上项目(52078286)
中铁二十局集团有限公司技术开发课题(YF1805SD01B)

Received: 2021-01-27   Revised: 2021-04-19   Accepted: 2021-05-4  

作者简介 About authors

戴治恒(1991-),博士生,从事盾构隧道及地下工程研究.

摘要

以佛-莞城际线路长隆隧道工程为背景,采用室内试验和数值模拟,研究常压开仓时换刀区失稳和渐进破坏过程.结合工程实际建立数值模型,采用快速拉格朗日差分法分析钢管桩-注浆方案常压换刀区地层的安全系数,对比分析钢管桩-注浆加固方案对换刀区地层应力释放和位移的控制效果.结果表明,常压开仓时盾构开挖面首先失稳,并引起土体流失以及土压力释放现象;随着刀盘后移,逐渐诱导换刀区地层出现大范围竖向位移,最终贯通至地表.采用钢管桩-注浆方案,换刀区安全系数得到显著提高,地层应力释放和位移均得到有效控制.与注浆加固方案相比,钢管桩-注浆方案具有工期短、污染少的优点且钢管桩可回收,不影响土体后续使用,为工程提供新的地层加固思路.

关键词: 常压换刀; 钢管桩-注浆加固; 开挖面稳定性; 全风化地层; 上软下硬地层

Abstract

Based on the Foshan-Dongguan Intercity Line Changlong Tunnel Project, indoor tests and numerical simulations were conducted to study the instability and progressive failure process of the cutter replacement ground at atmospheric pressure. The fast Lagrangian analysis of continua method was adopted to establish the numerical model. The safety factor of the cutter replacement ground was analyzed, and the effect of the steel pipe pile-grouting method on the control effect of release and displacement was studied. The results show that the excavation face becomes unstable at atmospheric pressure, which causes soil loss and earth pressure release. As the cutter head moves backward, a large-scale vertical displacement of cutter replacement ground is gradually induced, and finally goes through to the surface. With the steel pipe pile-grouting reinforcement, the safety factor of the cutter replacement ground is significantly improved, and the ground stress release and displacement is effectively controlled. Compared with the grouting reinforcement, the steel pipe pile-grouting reinforcement has the advantages of short construction period and less pollution. Moreover, the steel pipe pile could be recycled without affecting the subsequent use of the soil, which provides a new ground reinforcement idea for the project.

Keywords: cutter replacement at atmospheric pressure; steel pipe pile-grouting reinforcement; face stability; fully weathered stratum; upper-soft and lower-hard stratum

PDF (18433KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

戴治恒, 张孟喜, 魏辉, 顾婕, 张晓清. 钢管桩-注浆加固盾构换刀区稳定性分析[J]. 上海交通大学学报, 2023, 57(6): 690-699 doi:10.16183/j.cnki.jsjtu.2021.032

DAI Zhiheng, ZHANG Mengxi, WEI Hui, GU Jie, ZHANG Xiaoqing. Stability Analysis of Shield Cutter Replacement Ground Reinforced with Steel Pipe Pile-Grouting[J]. Journal of Shanghai Jiaotong University, 2023, 57(6): 690-699 doi:10.16183/j.cnki.jsjtu.2021.032

广州素有“地质博物馆”之称,地质条件极其复杂,大量分布着残积土层、深厚软土层以及软岩层[1].为避免造成施工困难和工程事故,在复杂地层开展盾构施工需及时开仓更换失效和损坏的刀具.盾构换刀主要分为带压和常压换刀,带压换刀时,技术人员必须在一定压力环境中进行作业,具有时间短、效率低和风险大的缺点[2];常压换刀时,需预先对地层进行加固,然后在常压条件下进行开仓换刀.与带压换刀相比,常压换刀效率高、风险低.长隆隧道工程开展常压换刀作业,主要采用注浆加固方案.注浆加固方案需使用大量浆液,存在工期长的缺点.频繁换刀时,势必会拖延工程进度.注浆加固污染较大,残留在地层中的注浆加固体会影响土体的后续使用.在隧道开挖面附近保留注浆加固,隧道上方采用钢管桩加固,可达到缩短工期、降低污染的目的.目前,还没有对钢管桩-注浆加固方案的研究和应用,故针对钢管桩-注浆加固换刀区稳定性展开研究具有理论和现实价值.

常压换刀中,地层加固的目的是提高换刀区的稳定性.针对盾构隧道稳定性问题,朱伟等[3]针对土压平衡盾构不满舱施工时,开挖面的整体稳定、开挖面部分坍塌、壁后注浆窜浆等现象进行讨论和分析;宋洋等[4]结合工程实际分析了外加剂掺入量和地层复合比对出浆相对密度的影响规律、泥浆的渗透规律及动、静态泥膜成膜规律;王林等[5]通过数值模拟和理论分析,研究了考虑局部失稳时盾构隧道开挖面挤出破坏机理;宋洋等[6]开展模型试验和理论研究,建立了砂-砾复合地层开挖面极限支护力计算模型;牛豪爽等[7]通过试验研究了渗流对粉砂地层开挖面支护压力和稳定性的影响;杨峰等[8]采用改进后的上限有限元法程序研究了地表超载作用下非均质黏土地层隧道开挖面的稳定性,综合分析了各土体因素对开挖面失稳临界荷载上限解和地层破坏模式的影响;米博等[9]开展了浅埋盾构隧道的开挖渗流模型,研究了开挖进土量对开挖面水平压力、孔隙水压力和附近地表沉降的影响;代仲海等[10]运用数值模拟和理论分析方法,分析了开挖面失稳模式、支护压力及地表沉降随盾构掘进位移的变化规律,推导了穿越邻近隧道时支护压力的变化模式;程红战等[11]基于数值分析软件平台,研究了内摩擦角的变异系数、自相关距离对开挖面失稳模式和极限支护应力的影响规律,探讨了极限支护应力特征值的选取;Eshraghi等[12]依托德黑兰地铁3号线工程项目,采用蒙特卡罗方法进行数据模拟,分析特定支护压力下的安全系数小于预定值的概率,利用有限元法计算了工作面坍塌时的面压力.目前,国内外学者主要聚焦于地表超载、渗流、支护压力等因素对掘进过程中盾构开挖面稳定性的影响,鲜有对常压开仓换刀时换刀区稳定性的研究.

通过室内试验和数值模拟,考虑常压换刀时顶推力卸载对换刀区稳定性的影响,研究换刀区失稳和渐进破坏过程.结合工程实际,确定钢管桩-注浆加固方案,并与注浆加固方案对比,分析钢管桩-注浆加固方法的加固效果,为地层加固提供新思路.

1 均质地层换刀区稳定性分析

1.1 室内模型试验

1.1.1 试验概况

试验采用模型箱的长×宽×高为800 mm×290 mm×600 mm,由4块钢化璃板拼装而成,如图1所示.模型箱内壁涂抹凡士林以减小玻璃板与砂土的摩阻力.试验采用砂土模拟均质地层,用有机玻璃管模拟衬砌.玻璃管厚度为0.2 cm,内径为6 cm,密度为1.19×103 kg/m3.刀盘通过有机玻璃板进行模拟,与速度可控的专用电机黏接在一起.电动机以恒定速度缓慢后移,模拟盾构刀盘卸载工况.为便于观察,取盾构隧道原型的一半进行试验模拟.砂土相对体积质量为2.65,设计孔隙比为0.597,不均匀系数为1.39,曲率系数为0.89.采用人工落雨法控制土样密实度,落距为0.72 m,每铺设30 cm进行一次刮平,砂土相对密实度为70%~74%.根据工况,模型试验中设置隧道埋深为3D(D为隧道直径).

图1

图1   换刀区稳定性试验模型

Fig.1   Test model for cutter replacement ground stability


1.1.2 试验结果分析

模型试验全过程采用粒子图像测速法(PIV)记录换刀区失稳和渐进破坏过程.采用电荷耦合元件(CCD)照相机实时拍摄高分辨率灰度照片,每1 s记录一幅图片,使用北京立方天地科技公司提供的MicroVec软件分析得到土体颗粒的位移矢量结果.位移矢量分析首先匹配两张图片中灰度像素点的相关性,然后对比分析每个灰度像素点的移动路径,最终得到矢量结果.

当两张图片中颗粒位移相差较大时,像素点将无法匹配,矢量分析结果失真.因此,在进行位移矢量分析前,将试验结果等分为6个阶段,每阶段选两张间隔30 s的图片进行分析,分析结果如图2所示.其中,U表示位移矢量的大小,箭头指向表示位移矢量的方向,箭头位置和颜色表示位移场分布.阶段1为卸载初期,开挖面始终与刀盘紧密接触,出现较小的水平位移;阶段2随着刀盘持续后移,开挖面水平位移随之增大并出现竖向位移分量,换刀区出现局部失稳;阶段3~阶段6继续维持卸载,开挖面逐渐与刀盘脱离接触,表明涌入隧道内部的土体越来越少,在此过程中,换刀区位移分布越来越广,逐渐贯通至地表.

图2

图2   换刀区位移矢量分析结果

Fig.2   Displacement vector analysis result of cutter replacement ground


图2可知,仅在阶段1时开挖面位移矢量以水平方向为主,其他阶段开挖面位移矢量方向均为斜向右下,既分布有水平位移又有竖直方向位移.换刀区地层开挖面范围以外的位移矢量方向均为竖直方向.

1.2 均质地层数值模拟分析

1.2.1 数值模型建立

数值模型的长×宽×高为800 mm×290 mm×560 mm,隧道直径D为64 mm,埋深为192 mm.衬砌内径为60 mm,厚度为 2 mm.土体控制密度为1.9×103 kg/m3,内摩擦角为36.4°,泊松比为0.3,弹性模量为22 MPa,采用摩尔-库伦强度准则进行模拟.有机玻璃衬砌密度为1.19×103 kg/m3,弹性模量为3.25 GPa,泊松比为0.3,采用线弹性模型进行模拟.

1.2.2 数值结果分析

利用FLAC3D软件得到换刀区位移矢量的渐进变化过程,如图3所示.计算100步时为卸载初期,位移最大值为 0.038 878 2,如图3(a)所示,开挖面出现分布均匀的水平方向位移,位移指向隧道内部;计算 1 000 步时,位移最大值为 0.283 952,如图3(b)所示,开挖面位移逐渐发生变化,竖向位移分量逐渐增大;计算 7 400 步时,位移最大值为 1.746 15,如图3(c)所示,计算模型已平衡,最终开挖面位移矢量方向为水平偏下,上半部土体位移大于下半土体.

图3

图3   换刀区位移矢量

Fig.3   Displacement vector of cutter replacement ground


图3中红色线为换刀区土体失稳区域.卸载初期仅开挖面附近小范围发生失稳,随后不断向开挖面前方扩展,最终发展成为常见的楔形破坏模式.图3(c)中蓝色线为水平位移的分布范围,表明开挖面分布着显著的水平位移分量,而隧道上方主要为竖向位移.

换刀区土压力分布云图如图4所示.卸载后,换刀区地层的水平和竖向土压力(SyySzz)均出现明显的应力释放现象.水平土压力释放主要出现在开挖面附近,如图4(a)所示;而竖向土压力释放不仅出现在开挖面附近,同时也出现在开挖面上方较大范围内,如图4(b)所示.换刀区土压力释放现象与位移矢量分布一致,结合位移矢量的渐进变化过程可知,开挖面土压力释放并产生水平位移是诱发换刀区失稳破坏的原因.

图4

图4   土压力分布云图

Fig.4   Contour of earth pressure distribution


2 工程背景

2.1 地层分布

佛莞城际线路位于珠三角地区中南部,其中长隆隧道工程位于广州市番禺区,隧道全长 11.03 km,包含两站三区间.采用的土压平衡盾构机直径为8.85 m,隧道衬砌外径为8.5 m,环宽为1.6 m,厚为0.4 m,盾构机顶部覆土为15~25 m.隧道沿线地层从上往下分别为第四系坡洪积层(Q4dl+pl)、白垩系砂岩、泥质砂岩层(K)、震旦系二长花岗岩(Z),盾构机多次穿越上软下硬地层以及全风化花岗岩地层.

2.2 换刀点加固方案

现场主要采用注浆加固技术对换刀区进行加固.注浆加固虽能够保障常压开仓时开挖面的稳定性,但存在工期长、污染严重等问题,且遗留在土中的注浆加固体会影响土体的后续使用,如图5(a)所示.为缩短地层加固工期、减少污染,提出采用可回收式钢管桩对换刀区进行加固,计划在换刀完成后回收所有钢管桩,但为避免与钢管桩发生碰撞,盾构机需要停在换刀点前方,导致开挖面无法被加固.刀盘卸载时,开挖面易发生局部失稳,不利于开展换刀工作;钢管桩端部易发生弯曲,不利于开展钢管桩回收工作,如图5(b)所示.综合钢管桩和注浆加固技术的优缺点,提出钢管桩-注浆加固技术如图5(c)所示,隧道开挖面附近仍采用注浆加固,隧道上方采用钢管桩加固.换刀后,注浆加固体可被挖除,钢管桩可悉数回收,不仅能够缩短工期、降低污染而且不影响土体的后续使用.

图5

图5   换刀区加固技术

Fig.5   Cutter replacement ground reinforcement technology


3 钢管桩-注浆加固换刀区稳定性分析

换刀区地层加固工况复杂、安全风险高,目前工程项目不具备开展现场试验的条件,也很难在实验室中进行模拟.因此,采用FLAC3D数值分析方法,结合工程实际,对比不同技术加固后换刀区的稳定性、应力分布及位移大小,研究钢管桩-注浆加固效果.

3.1 数值模型建立

现场共设置2排共计6个注浆孔,孔位布置如图6(a)所示,每个注浆孔能够加固半径为1 m范围内的土体.现场拟定采用的可回收式钢管桩直径为 1 016 mm,壁厚为14 mm,设计3排共计7根钢管桩,桩位布置如图6(b)所示.

图6

图6   孔位和桩位布置平面图

Fig.6   Layout of holes and piles


注浆加固模型整体概况如图7(a)所示,钢管桩-注浆加固模型整体概况如图7(b)所示.采用ZONE网格模拟土体,采用NULL网格模拟土体开挖.考虑整体对称性,沿隧道掘进方向取一半进行建模,地层长度为60 m,宽度为20 m;考虑土体开挖,各土层的塑性特征采用摩尔-库伦强度准则进行模拟.

图7

图7   FLAC3D数值模型概况

Fig.7   Overview of numerical FLAC3D models


选取全风化地层断面和上软下硬地层断面两个典型断面进行分析.其中,全风化地层断面从上往下为素填土层、粉质黏土层、全风化泥质砂岩、强风化泥质砂岩和中风化泥质砂岩,如图8(a)所示,隧道完全位于全风化地层中;上软下硬地层断面从上往下为素填土层、粉质黏土层、全风化二长花岗岩层,如图8(b)所示,隧道位于粉质粘土层和全风化二长花岗岩层中间.各地层土体力学性质如表1所示.

图8

图8   换刀点典型断面

Fig.8   Typical section of cutter replacement ground


表1   地层土体力学性质

Tab.1  Mechanical properties of strata

地层类型土层名称厚度/m弹性模量/MPa内摩擦角/(°)黏聚力/kPa泊松比重度/(kN·m-3)
全风化地层素填土9.02.57.012.00.2019.0
粉质黏土8.036.220.010.60.2519.0
全风化砂岩15.560.023.19.60.3220.0
强风化砂岩7.570.032.52.00.2821.0
中风化砂岩20.080.035.03.00.2723.0
上软下硬地层素填土2.02.57.012.00.2019.0
粉质黏土24.036.220.010.60.2519.0
全风化二长花岗岩26.0108.821.318.20.3221.0

新窗口打开| 下载CSV


钢管桩采用桩单元(PILE)进行模拟,选用线弹性模型模拟钢材的力学性能.PILE单元是FLAC3D程序内置的结构单元,可以自动与周围模拟土体的实体单元(ZONE)建立摩擦接触,能够模拟钢管桩与周围土体的摩擦作用.盾构管片采用衬砌单元(LINER)进行模拟,选用线弹性模型模拟衬砌的力学性能,计算参数如表2所示.文献[13]中表明注浆加固对土体压缩模量和黏聚力提高较大,而对土体内摩擦角影响不大,因此在模拟注浆加固时,参照文献[13]中将弹性模量提高到2.93倍,将黏聚力提高到3.18倍,如表3所示.

表2   结构单元计算参数

Tab.2  Parameters of structure elements

单元名称外径/m厚度/m弹性模量/GPa泊松比重度/(kN·m-3)
衬砌8.50.430.50.2525.0
1.0160.014200.00.2678.4

新窗口打开| 下载CSV


表3   注浆加固区计算参数

Tab.3  Parameters of grouting reinforcement area

土层名计算参数
加固高度/m弹性模量/MPa内摩擦角/(°)黏聚力/kPa泊松比重度/(kN·m-3)
全风化砂岩6.5176.424.130.40.3220
粉质黏土4.5106.320.033.70.2519
全风化二长花岗岩2.0319.722.058.00.3221

新窗口打开| 下载CSV


数值模拟主要包括以下3步.

(1) 初始状态模拟地应力平衡:建立地层模型并赋予材料属性和边界约束后,在重力荷载条件下计算至平衡,然后清零所有节点位移和速度.

(2) 模拟隧道开挖:开挖面施加静止土压力,分节开挖土体并添加LINER单元,并计算至平衡.

(3) 模拟常压开仓:开挖至预定断面后,提高相关地层的强度来模拟注浆,添加PILE单元来模拟钢管桩加固,然后逐级降低开挖面压力来模拟顶推力卸载.

3.2 数值结果分析

3.2.1 安全系数

结合强度折减法,计算两种典型地层各工况的安全系数如图9所示.未加固时,全风化地层安全系数为1.02,上软下硬地层为1.10.注浆加固后,全风化地层和上软下硬地层安全系数分别为1.22和1.34,提高了19.6%和21.8%;钢管桩-注浆加固后,全风化地层和上软下硬地层安全系数分别为1.24和1.38,提高了21.5%和25.5%.

图9

图9   各工况地层安全系数

Fig.9   Safety factor for each working condition


3.2.2 应力分布

各工况平均应力分布如图10所示,两典型地层应力(S)分布基本一致.无论加固与否,开挖面附近均出现了显著的应力释放现象,因此易发生局部失稳.未加固时,开挖面应力释放向加固区快速扩散.全风化地层应力释放扩散范围广,故整体稳定性差;上软下硬地层应力释放范围相对较小,故整体稳定性较好.加固后,加固区应力释放得到有效抑制,尤其是在开挖面上方未出现明显的应力释放,加固区稳定性得到显著提高.

图10

图10   土压力分布云图

Fig.10   Contour of earth pressure distribution


3.2.3 水平位移分布

全风化地层水平位移曲线如图11(a)所示,其中,以开挖面中心为原点,Z为监测点的竖向坐标;Uh为水平方向位移.钢管桩-注浆加固和注浆加固后,水平位移均得到有效控制,分布较为均匀,开挖面水平位移控制在190 mm左右,注浆加固控制在210 mm左右;加固区水平位移控制在120 mm左右,注浆加固控制在140 mm左右.

图11

图11   水平位移分布

Fig.11   Horizontal displacement distribution


上软下硬地层水平位移曲线如图11(b)所示,开挖面上半部土体位移大于下半部.钢管桩-注浆加固后水平位移分布更均匀,开挖面水平位移控制在180 mm左右,注浆加固控制在200 mm左右;加固区水平位移控制在120 mm左右,注浆加固控制在140 mm左右.

3.2.4 竖向位移分析

全风化地层竖向位移曲线如图12(a)所示,上软下硬地层竖向位移曲线如图12(b)所示,位移分布与全风化地层相似.其中,以开挖面中心为原点, X为监测点的水平坐标; Uv为竖直方向位移.

图12

图12   换刀区竖向位移曲线

Fig.12   Vertical displacement of cutter replacement ground


图12可知,越靠近开挖面竖向位移越大,位移拐点出现在开挖面正上方.埋深较浅时,钢管桩-注浆加固地层竖向位移曲线不平滑,在开挖面前方2 m出现陡增现象,地表处的竖向位移一度超过注浆加固地层.随着埋深增加,竖向位移曲线趋于平滑.埋深较浅时,两种工况竖向位移相差不大,埋深越深两者竖向位移差距越明显.在地表处,钢管桩-注浆加固地层竖向位移最大值为4.0 mm,注浆加固为3.8 mm;在埋深25 m处,钢管桩-注浆加固地层竖向位移最大值为23.4 mm,注浆加固为42.8 mm.埋深较浅时,钢管桩-注浆加固地层竖向位移曲线不平滑,在开挖面前方2 m处出现陡增现象.随着埋深增加竖向位移曲线趋于平滑.钢管桩-注浆加固地层竖向位移小于注浆加固地层,埋深越深两者竖向位移差距越明显.在地表处,钢管桩-注浆加固地层竖向位移最大值为3.3 mm,注浆加固为4.0 mm;在埋深21 m处,钢管桩-注浆加固地层竖向位移最大值为19.4 mm,注浆加固为38.1 mm.

结果显示,在开挖面正上方,钢管桩-注浆加固地层地表位移出现陡增现象,而埋深越深即越靠近开挖面,该现象逐渐弱化.经讨论,位移陡增是由钢管桩沉降所致.桩体沉降由桩身压缩变形和桩端沉降组成,桩侧摩阻力分布、端阻力比例和桩端以下土的性质则是重要影响因素[14].

全风化地层其中一根钢管桩位移(Upile)和周围土体位移情况分析如图13所示,该钢管柱位于开挖面前方2 m即地层位移发生陡增位置处.钢管桩桩端位移明显大于桩顶位移,桩体内部轴力为拉力,这表明钢管桩桩端受到向下的作用力,而桩顶受到向上的作用力.刀盘卸载后开挖面土体产生水平位移,引起桩端附近土体发生竖向位移,对桩端施加向下的摩阻力,导致桩体变形和沉降.浅层土体沉降相对较小,会对钢管桩施加向上的摩阻力,限制桩体沉降.相反,钢管桩桩顶会对浅层土体施加向下的摩阻力,扩大其沉降.

图13

图13   位移分析

Fig.13   Displacement analysis


4 结论

通过开展室内模型试验和数值模拟,分析开挖面失稳、渐进破坏过程、土体位移和应力分布.建立钢管桩-注浆加固FLAC3D计算模型,与注浆加固技术进行对比,分析换刀区的稳定性、开挖面水平位移和隧道上方竖向位移的分布情况,主要结论如下:

(1) 卸载初期,开挖面位移矢量以水平方向为主.随着刀盘持续卸载,开挖面既分布有水平位移,又分布有竖直方向位移,而开挖面范围以外的位移矢量方向均为竖直方向.开挖面土压力释放并产生水平位移是诱发换刀区失稳破坏的原因.

(2) 钢管桩-注浆加固有效地抑制了换刀区地层应力释放现象,能显著提高地层的安全系数,略优于注浆加固.对比注浆加固,钢管桩-注浆加固不同地层开挖面水平位移平均减小20 mm.钢管桩-注浆加固换刀区的竖向位移整体小于注浆加固,而且埋深越深两者差距越大.

(3) 尽管钢管桩桩顶会引起地表沉降激增现象,但是桩底端部有效地控制了开挖面附近竖向位移,这对换刀区稳定性提升更大,证明了钢管桩-注浆加固技术能够降低注浆量、缩短工期、减少污染,不影响土体的后续使用,可行且有效.

参考文献

周志强, 钟显奇, 宋金良, .

广州地区盾构施工风险及控制技术要点

[J]. 隧道建设, 2010, 30(5): 608-611.

[本文引用: 1]

ZHOU Zhiqiang, ZHONG Xianqi, SONG Jinliang, et al.

Risk analysis and risk control technology for shield tunneling in Guangzhou region

[J]. Tunnel Construction, 2010, 30(5): 608-611.

[本文引用: 1]

陈健, 刘红军, 闵凡路, .

盾构隧道刀具更换技术综述

[J]. 中国公路学报, 2018, 31(10): 36-46.

[本文引用: 1]

盾构穿越复杂水文地质地层时,常因刀盘刀具过量磨损而导致盾构被迫停机,这已成为困扰盾构施工的重要难题之一,进行刀具更换是目前解决这一难题,恢复盾构掘进的主要方法。然而,工程界尚未形成系统的盾构换刀技术体系。针对这一问题,在对已有技术研究理解和总结的基础上,阐述了盾构刀具更换技术的内涵和主要分类,并结合典型盾构工程换刀作业实例和笔者所在课题组的研究成果,对加固地层-常压换刀、基于常压可更换刀盘设计的换刀、带压换刀等3种主要换刀技术的原理、技术流程、关键技术、适用范围和优缺点等进行系统的分析和总结。最后介绍了日本最新的刀具更换技术,并对中国盾构隧道刀具更换技术进行了展望。结果表明:地层加固-常压换刀技术和带压换刀技术都是在常规刀盘设计条件下形成的,其关键都是保障开挖面地层的稳定性;差别在于,前者是使加固开挖面地层达到自稳后,在常压条件下实施的,而后者则是通过泥浆渗透成膜等辅助工艺提高开挖面地层的闭气性后,在气压支护条件下实施的;对于基于常压可更换刀盘设计的换刀技术来说,开挖面地层的稳定性不需要重点考虑,盾构机特殊的中空刀盘辐臂和常压可更换刀具设计才是该技术的关键。

CHEN Jian, LIU Hongjun, MIN Fanlu, et al.

Technical review of cutter replacement in shield tunneling

[J]. China Journal of Highway and Transport, 2018, 31(10): 36-46.

[本文引用: 1]

Shield tunneling machines are often used in complex hydrogeological environments and have to be frequently shut down owing to excessive wear of the cutters. This has become one of the important problems affecting construction during tunneling operations. Cutter replacement is the primary method of solving this problem and restoring tunnel shields. However, a scientific system of cutter replacement has not yet been formulated for the engineering field. On the basis of understanding and summarizing existing research, a technique and classification of shield cutter replacement were expounded. Three main techniques of cutter replacement, namely exchanging cutters under normal pressure after formation reinforcement, exchanging cutters based on the design of permanent pressure replaceable cutter, and exchanging cutters under pressure, were utilized frequently in construction sites. The principles, processes, key technologies, applications, advantages, and disadvantages were analyzed and summarized based on typical cutter replacement operations and research results of the project. Moreover, the latest cutter replacement techniques used in Japan were introduced, and the cutting tool replacements for shield tunneling in China were evaluated. The results show that, the cutter replacement techniques under normal pressure after formation reinforcement and under pressure were formulated for conventional cutterhead design, and the key requirements were to ensure the stability of the excavation face. The differences between these were that, the former was performed under normal pressure after stabilizing the excavation face to achieve self-stability, whereas the latter was conducted under the condition of air pressure support using the auxiliary technology of slurry infiltration and filter cake formation to improve the air-tightness of the excavation face. The stability of the excavation face was not considered for the cutter replacement owing to the design of the permanent pressure replaceable cutterhead. The significance of this technique is the special design of the hollow cutter arm and the permanent pressure replaceable cutter for the shield machine.

朱伟, 钱勇进, 王璐, .

土压平衡盾构不满舱施工遇到的问题及对策

[J]. 中国公路学报, 2020, 33(12): 224-234.

DOI:10.19721/j.cnki.1001-7372.2020.12.018      [本文引用: 1]

中国土压平衡盾构采用不满舱施工非常普遍,因此施工过程中经常出现一些问题。通过对开挖面压力平衡状态的分析,结合工程实例对开挖面的整体稳定、渣土排出异常、开挖面部分坍塌、壁后注浆窜浆等现象进行讨论,解释其发生的主要原理。提出渣土泥浆化的概念、判断标准,明确其与喷涌的差异,并讨论不满舱施工时窜浆发生过程,给出判断窜浆发生的主要条件,明确发生局部渗透破坏的条件。研究结果表明:即使风化岩等高渗性地层开挖面整体稳定性计算满足不满舱施工的强度要求,也会出现局部渗透破坏甚至开挖面坍塌;不满舱施工开挖面局部渗透破坏等引起的超挖量大、窜浆引起盾尾充填效果差均导致地表沉降过大。基于上述问题产生的原理提出相应措施以维持土舱内压力与地层中土水压力的平衡,研究结果能够为土压平衡盾构施工提供一定技术支撑。

ZHU Wei, QIAN Yongjin, WANG Lu, et al.

Problems and measures of earth pressure balance shield during construction with the unfilled chamber

[J]. China Journal of Highway and Transport, 2020, 33(12): 224-234.

DOI:10.19721/j.cnki.1001-7372.2020.12.018      [本文引用: 1]

During low-pressure construction in the earth pressure balance (EPB) shield in China, problems often occur in the construction process due to the unfilled chamber. Based on an analysis of the pressure balance state of the excavation face, combined with engineering examples, problems, such as the abnormal discharge of soil in the high-permeability stratum, unstable failure of the excavation face, grout leakage, and excessive surface settlement, were studied to clarify the main principles of their occurrence. The concept of the judgment standard of chamber soil sliming was proposed, and the difference between sliming and spewing was clarified. Even if the stability calculation of the excavation surface of the high-permeability strata, such as weathered rock, met the strength requirements of the overall stability of the surface, partial seepage failure was considered to occur and gradually develop into the collapse of the excavation face. In addition, the conditions for partial seepage failure were examined. Furthermore, the process of backfill grouting leakage during construction with a unfilled chamber was investigated, and the main conditions for determining the occurrence of grout leakage were determined. The significant over-excavation of the stratum due to seepage failure and the poor grouting effect due to grout leakage are expected to lead to excessive surface settlement. Based on the principles of the above-mentioned problems, corresponding measures were proposed to maintain the balance between the chamber pressure and the earth and water pressures in the stratum. The findings of this study may provide technical support for EPB shield construction in China.

宋洋, 李昂, 王韦颐, .

泥岩圆砾复合地层泥水平衡盾构泥浆配比优化研究与应用

[J]. 岩土力学, 2020, 41(12): 4054-4062.

[本文引用: 1]

SONG Yang, LI Ang, WANG Weiyi, et al.

Research and application of mud proportioning optimization of slurry balance shield in mudstone and gravel composite stratum

[J]. Rock and Soil Mechanics, 2020, 41(12): 4054-4062.

[本文引用: 1]

王林, 韩凯航, 郭彩霞, .

考虑局部失稳的盾构隧道开挖面挤出破坏数值模拟与理论分析

[J]. 土木工程学报, 2020, 53 (Sup.1): 50-56.

[本文引用: 1]

WANG Lin, HAN Kaihang, CUO Caixia, et al.

Numerical simulation and theoretical analysis of passive failure mechanism of shield tunnel face considering partial instability

[J]. China Civil Engineering Journal, 2020, 53 (Sup.1): 50-56.

[本文引用: 1]

宋洋, 王韦颐, 杜春生.

砂-砾复合地层盾构隧道开挖面稳定模型试验与极限支护压力研究

[J]. 岩土工程学报, 2020, 42(12): 2206-2214.

[本文引用: 1]

SONG Yang, WANG Weiyi, DU Chunsheng.

Model tests on stability and ultimate support pressure of shield tunnel in sand-gravel composite stratum

[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2206-2214.

[本文引用: 1]

牛豪爽, 翁效林, 余航飞, .

渗流作用下粉砂地层中盾构隧道开挖面失稳模式离心试验研究

[J]. 土木工程学报, 2020, 53(Sup.1): 99-104.

[本文引用: 1]

NIU Haoshuang, WENG Xiaolin, YU Hangfei, et al.

Centrifugal test study on instability mode of shield tunnel excavation face in silty sand stratum under seepage

[J]. China Civil Engineering Journal, 2020, 53 (Sup.1): 99-104.

[本文引用: 1]

杨峰, 何诗华, 吴遥杰, .

非均质黏土地层隧道开挖面稳定运动单元上限有限元分析

[J]. 岩土力学, 2020, 41(4): 1412-1419.

[本文引用: 1]

YANG Feng, HE Shihua, WU Yaojie, et al.

Tunnel face stability analysis by the upper-bound finite element method with rigid translatory moving element in heterogeneous clay

[J]. Rock and Soil Mechanics, 2020, 41(4): 1412-1419.

[本文引用: 1]

米博, 项彦勇.

砂土地层浅埋盾构隧道开挖渗流稳定性的模型试验和计算研究

[J]. 岩土力学, 2020, 41(3): 837-848.

[本文引用: 1]

MI Bo, XIANG Yanyong.

Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground

[J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.

[本文引用: 1]

代仲海, 胡再强.

穿越紧邻隧道时盾构开挖面稳定性分析

[J]. 中国公路学报, 2020, 33(1): 145-152.

DOI:10.19721/j.cnki.1001-7372.2020.01.015      [本文引用: 1]

当盾构近距离穿越邻近隧道时,由于存在既有隧道的刚度约束,隧道周围土体的破坏模式会受到既有隧道影响。考虑盾构近距离穿越紧邻已有隧道的特殊施工形式,构建三维弹塑性有限元计算模型,分析盾构处于不同位置时其开挖面失稳破坏形态、开挖面支护压力与盾构掘进位移之间的关系以及隧道上方地表沉降规律;基于极限平衡法,推导盾构近距离穿越紧邻隧道时开挖面极限支护压力变化模式,并对相关参数的敏感性进行验证讨论。研究结果表明:既有隧道的存在使得破坏区域受到抑制,沿开挖方向两滑动面不对称,靠近既有隧道的滑动面张开角比另一滑动面张开角小;随着楔形体倾斜角增大,相同内摩擦角条件下的开挖面支护压力不断增大,同时由于盾构掘进产生的土拱效应和盾构开挖面上方既有隧道的刚度约束,随着内摩擦角的不断增大,开挖面支护压力呈先增大后逐渐减小的抛物线形变化;相同参数条件下,盾构在黏性土层中掘进时,由于黏性土层中产生的土拱效应较弱,所需提供开挖面稳定的支护压力略大,开挖面支护压力较盾构在砂性土层中掘进时略大,随着埋深比的增加,维持盾构开挖面稳定的极限支护压力逐渐增大,且随着内摩擦角的增大,开挖面极限支护压力相应增大。研究成果可为类似盾构隧道工程建设提供一定的理论参考。

DAI Zhonghai, HU Zaiqiang.

Stability analysis of excavation face during shield passing through adjacent tunnel

[J]. China Journal of Highway and Transport, 2020, 33(1): 145-152.

DOI:10.19721/j.cnki.1001-7372.2020.01.015      [本文引用: 1]

When shield tunnels pass through adjacent tunnels at close distance, the failure modes of soil around tunnels are affected by the rigidity constraints of existing tunnels. A three-dimensional elastic-plastic finite element model was used to analyze the failure modes of the shield excavation surface. The relationship supports that the pressure of the excavation surface and the displacement of shield excavation, ground settlement, and law are higher than those of the tunnels. On the basis of the balance method, the variation model of the ultimate abutment pressure of the shield tunneling face was deduced when shield tunneling approached the tunnel, and the sensitivity of relevant parameters was verified and discussed. The results show that the existing tunnel restrains the damage area, the asymmetrical sliding surfaces along the excavation direction, and the opening angle of the sliding surface near the existing tunnel is smaller than that of the other sliding surface. With the increase of the inclination angle of the wedge, the supporting pressure of the excavation face increases continuously at the same internal friction angle. At the same time, owing to the soil arch effect caused by shield tunneling and the rigidity constraint of the existing tunnel above the shield excavation face, with the increase of the internal friction angle, the supporting pressure of the excavation face first increased and then decreased gradually. Under the same parameters, when the weak soil arch affects shield tunneling in the clay layer, the support pressure needed to provide stable excavation face is slightly larger, and the support pressure of the excavation face is slightly larger than that of shield tunneling in sandy soil layer. With the increase of burial depth ratio, the role of maintaining the stability of the shield excavation face is maintained. The limit support pressure gradually increased, and with the increase of the internal friction angle, the limit support pressure of the excavation face increased correspondingly. The research results provide a theoretical reference for similar shield tunnel construction.

程红战, 陈健, 胡之锋, .

考虑砂土抗剪强度空间变异性的盾构开挖面稳定性分析

[J]. 岩土力学, 2018, 39(8): 3047-3054.

[本文引用: 1]

CHENG Hongzhan, CHEN Jian, HU Zhifeng, et al.

Face stability analysis for a shield tunnel considering spatial variability of shear strength in sand

[J]. Rock and Soil Mechanics, 2018, 39(8): 3047-3054.

[本文引用: 1]

ESHRAGHI A, ZARA S.

Face stability evaluation of a TBM-driven tunnel in heterogeneous soil using a probabilistic approach

[J]. International Journal of Geomechanics, 2015, 15(6): 04014095.

DOI:10.1061/(ASCE)GM.1943-5622.0000452      URL     [本文引用: 1]

朱明听, 张庆松, 李术才, .

劈裂注浆加固土体的数值模拟和试验研究

[J]. 中南大学学报(自然科学版), 2018, 49(5): 1213-1220.

[本文引用: 2]

ZHU Mingting, ZHANG Qingsong, LI Shucai, et al.

Numerical simulation and experimental study on soil split grouting reinforcement mechanism

[J]. Journal of Central South University(Science and Technology), 2018, 49(5): 1213-1220.

[本文引用: 2]

陈锦剑, 王建华, 朱峰.

软土地区单桩沉降的简化计算方法

[J]. 上海交通大学学报, 2006, 40(12): 2126-2129.

[本文引用: 1]

CHEN Jinjian, WANG Jianhua, ZHU Feng.

A simplified calculation for the settlement of single piles in soft foundation

[J]. Journal of Shanghai Jiao Tong University, 2006, 40(12): 2126-2129.

[本文引用: 1]

/