New Type Power System and the Integrated Energy

Optimization Method for Combination of Residual Current Protection and Coincidence Brake Logic in a Low-Voltage Distribution System

  • XU Han ,
  • ZHU Sanli ,
  • ZHANG Tengfei ,
  • CHEN Shu ,
  • LIU Mingxiang
Expand
  • 1. College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    2. State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China
    3. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211006, China

Received date: 2023-09-01

  Revised date: 2023-10-26

  Accepted date: 2023-12-26

  Online published: 2025-07-22

Abstract

Low-voltage distribution systems frequently experience leakage current accidents. However, it is challenging to distinguish fault characteristics in abnormal operating conditions, such as electric shock to biological organisms and three-phase imbalance, which leads to the improper operation of existing residual current protection devices, making it difficult to balance both the safety and continuity of power supply in low-voltage distribution systems. Therefore, an optimization method is proposed for combination of the residual current protection and the coincidence reclosing logic to address the ground fault caused by the leakage of the low-voltage distribution system. First, the residual current protection device and the automatic reclosing switch are installed in the low-voltage side outlet of the transformer. When the over-threshold residual current of the fault phase is detected, the instantaneous skip circuit breaker is used to ensure the safety of the power supply. Then, the robust empirical mode decomposition-approximate entropy value and the intrinsic mode function-time domain eigenvalue of the residual current signal are extracted, followed by the establishment of a genetic algorithm-backpropagation over-threshold status identification neural network. Finally, based on the neural network model, the electrical and three-phase imbalance characteristics are effectively separated. The action logic of the residual current protection value setting algorithm and the automatic coincidence brake is optimized to ensure the continuity of power supply. The simulation analysis shows that the error of the classification results of the model after seven iterations is only 9.49×10-9 with a correlation coefficient of 0.99, confirming the feasibility of the proposed method.

Cite this article

XU Han , ZHU Sanli , ZHANG Tengfei , CHEN Shu , LIU Mingxiang . Optimization Method for Combination of Residual Current Protection and Coincidence Brake Logic in a Low-Voltage Distribution System[J]. Journal of Shanghai Jiaotong University, 2025 , 59(7) : 901 -911 . DOI: 10.16183/j.cnki.jsjtu.2023.438

References

[1] 董俊, 李一凡, 束洪春, 等. 配电网馈出线路单相永久性接地故障性质辨识方法[J]. 电工技术学报, 2020, 35(21): 4576-4585.
  DONG Jun, LI Yifan, SHU Hongchun, et al. Study on identification method of single phase permanent ground fault in distribution network feedout line[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4576-4585.
[2] SUN J. Feature extraction of arc high impedance grounding fault of low-voltage distribution lines based on Bayesian network optimisation algorithm[J]. IET Cyber-Physical Systems: Theory & Applications, 2023, 8(2): 109-118.
[3] 高伟, 饶俊民, 全圣鑫, 等. 不均衡小样本下多特征优化选择的生命体触电故障识别方法[J]. 电工技术学报, 2024, 39(7): 2060-2071.
  GAO Wei, RAO Junmin, QUAN Shengxin, et al. Biological electric-shock fault identification method based on multifeature optimization selection under unbalanced small sample[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2060-2071.
[4] 李春兰, 罗杰, 石砦, 等. 基于小波分析和概率神经网络的触电事故识别方法[J]. 江苏大学学报(自然科学版), 2023, 44(1): 75-81.
  LI Chunlan, LUO Jie, SHI Zhai, et al. Electric shock identification method based on probabilistic neural network and wavelet analysis[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(1): 75-81.
[5] 褚旭, 鲍泽宏. 综合能源系统电力网架继电保护原理综述[J]. 上海交通大学学报, 2023, 57(4): 379-392.
  CHU Xu, BAO Zehong. Overview of protection principle of power grid in integrated energy system[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 379-392.
[6] LUO X, DU Y, WANG X H, et al. Tripping characteristics of residual current devices under nonsinusoidal currents[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1515-1521.
[7] FRESCHI F. High-frequency behavior of residual current devices[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1629-1635.
[8] 翟国亮, 梁栋, 王玮, 等. 基于剩余电流和不平衡电流突变向量比的TN-C-S系统漏电故障检测方法[J]. 中国电机工程学报, 2024, 44(5): 1726-1737.
  ZHAI Guoliang, LIANG Dong, WANG Wei, et al. Leakage fault detection method for TN-C-S system based on residual current and unbalanced current mutation vector ratio[J]. Proceedings of the CSEE, 2024, 44(5): 1726-1737.
[9] LI C L, DU S H, LIAO C Y. Impacts of distribution network unbalanced impedance on action performances of residual current operated device[C]// 2008 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Nanjing, China: IEEE, 2008: 2105-2110.
[10] 吕新东, 单强, 刘辉, 等. 三相不平衡对剩余电流保护器误动的影响分析[J]. 工业仪表与自动化装置, 2022(2): 81-85.
  Lü Xindong, SHAN Qiang, LIU Hui, et al. Analysis of mal-operation of residual current device arose by three-phase imbalance[J]. Industrial Instrumentation & Automation, 2022(2): 81-85.
[11] 史鸿飞, 邓丰, 钟航, 等. 基于暂态时-频特征差异的配电网高阻接地故障识别方法[J]. 中国电机工程学报, 2024, 44(16): 6455-6470.
  SHI Hongfei, DENG Feng, ZHONG Hang, et al. Identification method of high impedance fault in distribution network based on transient time-frequency characteristic difference[J]. Proceedings of the CSEE, 2024, 44(16): 6455-6470.
[12] 杨智奇, 李天友, 陈航宇. 低压配电网的保护配置及其适应性分析[J]. 电气技术, 2020, 21(12): 40-44.
  YANG Zhiqi, LI Tianyou, CHEN Hangyu. Analysis of protection characteristics and applicability of low-voltage distribution lines[J]. Electrical Engineering, 2020, 21(12): 40-44.
[13] DONG L, BINGYIN X, GUOLIANG Z, et al. TN-C-S leakage protection method using residual and unbalanced current[C]// CIRED 2022 Shanghai Workshop. Shanghai, China: IET, 2022: 477-479.
[14] PESANTEZ D, CORREA D, ROBLES P. Protection for prevention of human electrocution in low-voltage distribution systems with declared load of 12 kVA[J]. Electric Power Systems Research, 2023, 217: 109038.
[15] 韩晓慧, 杜松怀, 苏娟, 等. 触电信号暂态特征提取及故障类型识别方法[J]. 电网技术, 2016, 40(11): 3591-3596.
  HAN Xiaohui, DU Songhuai, SU Juan, et al. Fault transient feature extraction and fault type identification for electrical shock signals[J]. Power System Technology, 2016, 40(11): 3591-3596.
[16] 王金丽, 刘永梅, 杜松怀, 等. 基于剩余电流固有模态能量特征的生物触电故障诊断模型[J]. 农业工程学报, 2016, 32(21): 202-208.
  WANG Jinli, LIU Yongmei, DU Songhuai, et al. Fault diagnosis model for biological electric shock based on residual current intrinsic mode function energy features[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 202-208.
[17] 关海鸥, 李伟凯, 杜松怀, 等. 基于Hilbert-Huang变换的生物触电电流检测模型[J]. 农业工程学报, 2017, 33(14): 202-209.
  GUAN Haiou, LI Weikai, DU Songhuai, et al. Detection model of biological electric shock current based on Hilbert-Huang transform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 202-209.
[18] 李春兰, 罗杰, 王长云, 等. 基于循环谱特征和聚类分析的触电识别[J]. 电工技术学报, 2021, 36(22): 4677-4687.
  LI Chunlan, LUO Jie, WANG Changyun, et al. Electric shock recognition method based on cyclic spectrum features and cluster analysis[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4677-4687.
[19] 张宇辉, 邵毕成, 孔祥旭, 等. 基于EWT和改进Prony算法的超高压线路单相自适应重合闸故障识别方法[J]. 东北电力大学学报, 2022, 42(4): 28-34.
  ZHANG Yuhui, SHAO Bicheng, KONG Xiangxu, et al. Single phase adaptive reclosing fault property identification method for EHV transmission lines based on EWT and improved Prony algorithm[J]. Journal of Northeast Electric Power University, 2022, 42(4): 28-34.
[20] 贾博文, 武建文, 刘俊堂, 等. 270V直流开断特性研究与耗散功率变化的Mayr模型仿真分析[J]. 中国电机工程学报, 2019, 39(5): 1334-1342.
  JIA Bowen, WU Jianwen, LIU Juntang, et al. Research on DC breaking characteristics of 270V DC system and simulation analysis of the Mayr model with variable dissipation power[J]. Proceedings of the CSEE, 2019, 39(5): 1334-1342.
[21] 巩泉役, 彭克, 陈羽, 等. 基于电弧随机性和卷积网络的交流串联电弧故障识别方法[J]. 电力系统自动化, 2022, 46(24): 162-169.
  GONG Quanyi, PENG Ke, CHEN Yu, et al. Identification method of AC series arc fault based on randomness of arc and convolutional network[J]. Automation of Electric Power Systems, 2022, 46(24): 162-169.
[22] WANG W, ZENG X J, YAN L J, et al. Principle and control design of active ground-fault arc suppression device for full compensation of ground current[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4561-4570.
[23] ZHENG H T, YUAN J B, CHEN L. Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation[J]. Energies, 2017, 10(8): 1168.
[24] 关海鸥. 低压电网剩余电流暂态过程特征提取与识别方法研究[D]. 北京: 中国农业大学, 2014.
  GUAN Haiou. Study on feature extraction and recognition methods of residual current transient process for low-voltage power grids[D]. Beijing: China Agricultural University, 2014.
[25] 熊晓祎, 肖先勇, 左金威, 等. 触电事故特征改进近似熵检测方法[J]. 电力系统保护与控制, 2017, 45(13): 27-33.
  XIONG Xiaoyi, XIAO Xianyong, ZUO Jinwei, et al. Electrical shock feature detection method based on improved approximate entropy[J]. Power System Protection & Control, 2017, 45(13): 27-33.
[26] BRO R, SMILDE A K. Principal component analysis[J]. Anal Methods, 2014, 6(9): 2812-2831.
Outlines

/