New Type Power System and the Integrated Energy

Optimization Configuration of Battery Storage Coordinated with Differentiated Frequency Regulation Strategy of Wind, Solar, and Thermal Power

  • CHENG Haowen ,
  • LI Kecheng ,
  • LIU Lu ,
  • CHENG Haozhong ,
  • SANG Bingyu
Expand
  • 1 Key Laboratory of Power Transmission and Power Conversion Control of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    2 Nanjing Branch of China Electric Power Research Institute, Nanjing 210009, China

Received date: 2024-08-19

  Revised date: 2024-09-14

  Accepted date: 2024-10-20

  Online published: 2024-11-28

Abstract

Diversified frequency regulation resources are an effective and inevitable approach for addressing frequency safety issues in new power system. Based on a differentiated frequency regulation strategy that coordinates wind power, photovoltaic (PV), thermal power, and energy storage, this paper proposes a source-side battery energy storage system (BESS) optimization method under multiple scenarios by coupling long-term planning with short-term unit commitment. Joint frequency regulation strategies for thermal-storage, wind-storage, and PV-storage systems are developed, refining various functional roles of supporting battery storage to enhance flexibility during frequency regulation. The optimization configuration model aims to minimize both the investment and operational costs of wind-solar-thermal-storage systems. Frequency response capacity available from the power system is set as a security constraint, and high-order multi-machine time-domain simulations are used to verify and iterate frequency security margins in the solution process. The proposed method is validated using an improved IEEE 24-bus system. The results show that battery energy storage can flexibly switch between smoothing fluctuations, reducing renewable energy curtailment, and participating in system frequency regulation.

Cite this article

CHENG Haowen , LI Kecheng , LIU Lu , CHENG Haozhong , SANG Bingyu . Optimization Configuration of Battery Storage Coordinated with Differentiated Frequency Regulation Strategy of Wind, Solar, and Thermal Power[J]. Journal of Shanghai Jiaotong University, 2025 , 59(10) : 1407 -1418 . DOI: 10.16183/j.cnki.jsjtu.2024.334

References

[1] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
  XIN Baoan, SHAN Baoguo, LI Qionghui, et al. Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[2] 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43(5): 1672-1693.
  WANG Mengjun, GUO Jianbo, MA Shicong, et al. Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1672-1693.
[3] 滕贤亮, 谈超, 昌力, 等. 高比例新能源电力系统有功功率与频率控制研究综述及展望[J]. 电力系统自动化, 2023, 47(15): 12-35.
  TENG Xianliang, TAN Chao, CHANG Li, et al. Review and prospect of research on active power and frequency control in power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2023, 47(15): 12-35.
[4] 张程铭, 柳璐, 程浩忠, 等. 考虑频率安全的电力系统规划与运行优化研究综述与展望[J]. 电网技术, 2022, 46(1): 250-265.
  ZHANG Chengming, LIU Lu, CHENG Haozhong, et al. Review and prospects of planning and operation optimization for electrical power systems considering frequency security[J]. Power System Technology, 2022, 46(1): 250-265.
[5] SUN M, MIN Y, XIONG X J, et al. Practical realization of optimal auxiliary frequency control strategy of wind turbine generator[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(3): 617-626.
[6] 周涛, 黄菊, 韩汝帅, 等. 综合惯性控制下风力机惯性支撑能力分析及等效惯量评估[J]. 上海交通大学学报, 2024, 58(12): 1915-1924.
  ZHOU Tao, HUANG Ju, HAN Rushuai, et al. Inertial support capacity analysis and equivalent inertia estimation of wind turbines in integrated inertial control[J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1915-1924.
[7] 米阳, 何进, 卢长坤, 等. 计及新能源并网的火储联合调峰运行优化研究[J]. 中国电机工程学报, 2025, 45(5): 1704-1715.
  MI Yang, HE Jin, LU Changkun, et al. Research on optimization of thermal storage combined peak shaving operation considering new energy grid connection[J]. Proceedings of the CSEE, 2025, 45(5): 1704-1715.
[8] 梁恺, 彭晓涛, 秦世耀, 等. 基于协同控制优化风储系统频率响应的策略研究[J]. 中国电机工程学报, 2021, 41(8): 2628-2640.
  LIANG Kai, PENG Xiaotao, QIN Shiyao, et al. Study on synergetic control strategy for optimizing frequency response of wind farm augmented with energy storage system[J]. Proceedings of the CSEE, 2021, 41(8): 2628-2640.
[9] 李忠文, 柏宁宁, 程志平, 等. 新型电力系统中异质调频机组分布式协同AGC方法研究[J]. 电网技术, 2024, 48(6): 2327-2335.
  LI Zhongwen, BAI Ningning, CHENG Zhiping, et al. Distributed collaborative AGC method for heterogeneous frequency regulation units in new power systems[J]. Power System Technology, 2024, 48(6): 2327-2335.
[10] 王语阳, 张琛, 张宇, 等. 提升弱网有功稳定输出能力的光伏逆变器Q-V下垂系数在线调整方法[J/OL]. 上海交通大学学报. https://doi.org/10.16183/j.cnki.jsjtu.2023.353.
  WANG Yuyang, ZHANG Chen, ZHANG Yu, et al. Online adjustment method for Q-V droop coefficient of photovoltaic inverters to enhance the stable output capability of weak grid active power[J/OL]. Journal of Shanghai Jiao Tong University. https://doi.org/10.16183/j.cnki.jsjtu.2023.353.
[11] 高建瑞, 李国杰, 汪可友, 等. 考虑储能充放电功率限制的并网光储虚拟同步机控制[J]. 电力系统自动化, 2020, 44(4): 134-141.
  GAO Jianrui, LI Guojie, WANG Keyou, et al. Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit[J]. Automation of Electric Power Systems, 2020, 44(4): 134-141.
[12] ZHU Y H, ZHAO D B, LI X J, et al. Control-limited adaptive dynamic programming for multi-battery energy storage systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4235-4244.
[13] 李兆伟, 方勇杰, 李威, 等. 电化学储能应用于电网频率安全防御三道防线的探讨[J]. 电力系统自动化, 2020, 44(8): 1-7.
  LI Zhaowei, FANG Yongjie, LI Wei, et al. Discussion on application of electrochemical energy storage in three defense lines of power grid frequency[J]. Automation of Electric Power Systems, 2020, 44(8): 1-7.
[14] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
  LI Jianlin, QU Shukang, MA Suliang, et al. Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 326-335.
[15] 许高秀, 王旭, 邓晖, 等. 考虑调频需求及风光出力不确定性的储能系统参与能量-调频市场运行策略[J]. 电网技术, 2023, 47(6): 2317-2330.
  XU Gaoxiu, WANG Xu, DENG Hui, et al. Optimal operation strategy of energy storage system’s participation in energy and regulation market considering uncertainties of regulation requirements and wind-photovoltaic output[J]. Power System Technology, 2023, 47(6): 2317-2330.
[16] 陆秋瑜, 杨银国, 谢平平, 等. 适应储能参与的调频辅助服务市场机制设计及调度策略[J]. 电网技术, 2023, 47(12): 4971-4989.
  LU Qiuyu, YANG Yinguo, XIE Pingping, et al. Market mechanism design and scheduling strategy of auxiliary services for frequency control adapting to energy storage participation[J]. Power System Technology, 2023, 47(12): 4971-4989.
[17] ZHANG Y J A, ZHAO C H, TANG W R, et al. Profit-maximizing planning and control of battery energy storage systems for primary frequency control[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 712-723.
[18] 杨银国, 冯胤颖, 魏韡, 等. 基于可消纳区间的风-火-储大基地日前-实时协同调度[J/OL]. 上海交通大学学报. https://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2023.509.
  YANG Yinguo, FENG Yinying, WEI Wei, et al. Wind-fire-storage base day-ahead real-time collaborative scheduling based on the dissipable interval[J/OL]. Journal of Shanghai Jiao Tong University. https://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2023.509.
[19] 沈阳武, 宋兴荣, 罗紫韧, 等. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293.
  SHEN Yangwu, SONG Xingrong, LUO Ziren, et al. Inertial control strategy for wind farm with distributed energy storage system based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293.
[20] NGUYEN N, ALMASABI S, BERA A, et al. Optimal power flow incorporating frequency security constraint[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6508-6516.
[21] 成明洋, 邢海军, 米阳, 等. 考虑风光储场站参与灵活爬坡的两阶段市场联合出清[J/OL]. 上海交通大学学报. https://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2023.570.
  CHENG Mingyang, XING Haijun, MI Yang, et al. Considering the participation of wind and solar storage stations in the two-stage market joint clearing of flexible climbing[J/OL]. Journal of Shanghai Jiao Tong University. https://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2023.570.
[22] 郭咏涛, 向月, 刘俊勇. 面向高比例清洁能源消纳的含灵活性资源电力系统规划方案优选[J]. 上海交通大学学报, 2023, 57 (9): 1146-1155.
  GUO Yongtao, XIANG Yue, LIU Junyong. Optimal planning of power systems with flexible resources for high penetrated renewable energy accommodation[J]. Journal of Shanghai Jiao Tong University, 2023, 57 (9): 1146-1155.
[23] 周霞, 陈文剑, 戴剑丰, 等. 考虑分布式储能SOC均衡的光储微网黑启动协调控制策略[J/OL]. 上海交通大学学报. https://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2023.395.
  ZHOU Xia, CHEN Wenjian, DAI Jianfeng, et al. Black-start coordinated control strategy of optical storage microgrid considering distributed energy storage SOC balance[J/OL]. Journal of Shanghai Jiao Tong University. https://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2023.395.
[24] 毛颖群, 张建平, 程浩忠, 等. 考虑频率安全约束及风电综合惯性控制的电力系统机组组合[J]. 电力系统保护与控制, 2022, 50(11): 61-70.
  MAO Yingqun, ZHANG Jianping, CHENG Haozhong, et al. Unit commitment of a power system considering frequency safety constraint and wind power integrated inertial control[J]. Power System Protection and Control, 2022, 50(11): 61-70.
Outlines

/