New Type Power System and the Integrated Energy

Two-Stage Robust Expansion Planning of Transmission Network Considering Uncertainty of Offshore Wind Power

  • TIAN Shuxin ,
  • HAN Xue ,
  • FU Yang ,
  • SU Xiangjing ,
  • LI Zhenkun
Expand
  • College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Received date: 2023-01-28

  Revised date: 2023-07-22

  Accepted date: 2023-07-24

  Online published: 2024-10-11

Abstract

The complex and multiple uncertainties of offshore wind power pose great challenges to the safety and robustness of transmission grid structures. In order to improve the adaptability of grid structure to offshore wind power, a robust expansion planning method based on Vague soft set is proposed. First, Monte Carlo simulation is employed to construct the offshore wind Vague scenarios, which transform multiple comprehensive uncertainties of offshore wind power into uncertain parameter sets from true membership function, pseudo-membership function, and unknown information measure based on the Vague soft set theory. Then, a two-stage robust expansion planning model based on Vague scenario set is established for transmission network with offshore wind power penetration. The minimum total investment cost of offshore and onshore line and network loss is taken as the objective function in the first stage, while the minimum objectives of wind abandonment and cutting load for offshore wind power are proposed with the alternating current power flow constraint based on second-order cone relaxation in the second stage. Based on the expected values of wind abandonment and cutting load returned by the second stage model, the operation variables of the first stage model are modified to ultimately obtain the iterative transmission network robust planning scheme. Finally, the Gurobi mathematical optimization engine is used to analyze the Garver 6-node system and IEEE 39-node system to verify the effectiveness and feasibility of the proposed robust expansion planning method.

Cite this article

TIAN Shuxin , HAN Xue , FU Yang , SU Xiangjing , LI Zhenkun . Two-Stage Robust Expansion Planning of Transmission Network Considering Uncertainty of Offshore Wind Power[J]. Journal of Shanghai Jiaotong University, 2024 , 58(9) : 1400 -1409 . DOI: 10.16183/j.cnki.jsjtu.2023.028

References

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
  ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 郭创新, 刘祝平, 冯斌, 等. 新型电力系统风险评估研究现状及展望[J]. 高电压技术, 2022, 48(9): 3394-3404.
  GUO Chuangxin, LIU Zhuping, FENG Bin, et al. Research status and prospect of new-type power system risk assessment[J]. High Voltage Engineering, 2022, 48(9): 3394-3404.
[3] 罗魁, 郭剑波, 马士聪, 等. 海上风电并网可靠性分析及提升关键技术综述[J]. 电网技术, 2022, 46(10): 3691-3703.
  LUO Kui, GUO Jianbo, MA Shicong, et al. Review of key technologies of reliability analysis and improvement for offshore wind power grid integration[J]. Power System Technology, 2022, 46(10): 3691-3703.
[4] 鲁宗相, 程丽娟, 乔颖, 等. 计及风资源约束的双天气模态海上风电系统可靠性评估[J]. 电网技术, 2015, 39(12): 3536-3542.
  LU Zongxiang, CHENG Lijuan, QIAO Ying, et al. Offshore wind power system reliability evaluation considering wind resource constrains and double weather patterns[J]. Power System Technology, 2015, 39(12): 3536-3542.
[5] 张硕, 李薇, 李英姿, 等. 面向新型电力系统的可再生能源绿色电力证书差异化配置模型[J]. 上海交通大学学报, 2022, 56(12): 1561-1571.
  ZHANG Shuo, LI Wei, LI Yingzi, et al. Differentiated allocation model of renewable energy green certificates for new-type power system[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1561-1571.
[6] 符杨, 刘阳, 黄玲玲, 等. 海上风电场集群接入系统组网优化[J]. 中国电机工程学报, 2018, 38(12): 3441-3450.
  FU Yang, LIU Yang, HUANG Lingling, et al. Optimization of grid integration network for offshore wind farm cluster[J]. Proceedings of the CSEE, 2018, 38(12): 3441-3450.
[7] 谢斯泓, 赵永生, 许移庆, 等. 大型海上风力机单叶片吊装对接技术综述[J]. 上海交通大学学报, 2023, 57(6): 631-641.
  XIE Sihong, ZHAO Yongsheng, XU Yiqing, et al. Review of single blade installation and docking technology of large offshore wind turbine[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 631-641.
[8] PUVVADA N Y, MOHAPATRA A, SRIVASTAVA S C. Robust AC transmission expansion planning using a novel dual-based bi-level approach[J]. IEEE Transactions on Power Systems, 2022, 37(4): 2881-2893.
[9] 李玲芳, 陈占鹏, 胡炎, 等. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801.
  LI Lingfang, CHEN Zhanpeng, HU Yan, et al. Expansion planning of renewable energy power system considering flexibility and economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801.
[10] 房方, 张效宁, 姚贵山, 等. 基于中尺度气象模式分析的海陆风电场间尾流扰动影响评估[J]. 中国电机工程学报, 2022, 42(13): 4848-4859.
  FANG Fang, ZHANG Xiaoning, YAO Guishan, et al. Assessment of the impact of wake interference within onshore and offshore wind farms based on mesoscale meteorological model analysis[J]. Proceedings of the CSEE, 2022, 42(13): 4848-4859.
[11] WANG S Y, GENG G C, JIANG Q Y. Robust co-planning of energy storage and transmission line with mixed integer recourse[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4728-4738.
[12] 陆秋瑜, 于珍, 杨银国, 等. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316.
  LU Qiuyu, YU Zhen, YANG Yinguo, et al. Two-stage optimal schedule of offshore wind-power-integrated multi-microgrid considering uncertain power of sources and loads[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1308-1316.
[13] ZHUO Z Y, DU E S, ZHANG N, et al. Incorporating massive scenarios in transmission expansion planning with high renewable energy penetration[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1061-1074.
[14] WANG S Y, BO R. A resilience-oriented multi-stage adaptive distribution system planning considering multiple extreme weather events[J]. IEEE Transactions on Sustainable Energy, 2023, 14(2): 1193-1204.
[15] 梁子鹏, 陈皓勇, 郑晓东, 等. 考虑风电极限场景的输电网鲁棒扩展规划[J]. 电力系统自动化, 2019, 43(16): 58-67.
  LIANG Zipeng, CHEN Haoyong, ZHENG Xiao-dong, et al. Robust expansion planning of transmission network considering extreme scenario of wind power[J]. Automation of Electric Power Systems, 2019, 43(16): 58-67.
[16] 黎嘉明, 艾小猛, 文劲宇, 等. 光伏发电功率持续时间特性的概率分布定量分析[J]. 电力系统自动化, 2017, 41(6): 30-36.
  LI Jiaming, AI Xiaomeng, WEN Jinyu, et al. Quantitative analysis of probability distribution for duration time characteristic of photovoltaic power[J]. Automation of Electric Power System, 2017, 41(6): 30-36.
[17] JIAO Z B, WU R D. A new method to improve fault location accuracy in transmission line based on fuzzy multi-sensor data fusion[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4211-4220.
[18] 谢敏, 邓佳梁, 吉祥, 等. 基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J]. 电网技术, 2017, 41(1): 210-214.
  XIE Min, DENG Jialiang, JI Xiang, et al. Cooling load forecasting method based on support vector machine optimized with entropy and variable accuracy roughness set[J]. Power System Technology, 2017, 41(1): 210-214.
[19] 朱立轩, 万灿, 鞠平, 等. 计及不确定性的电力系统区间分析研究综述[J]. 电力自动化设备, 2023, 43(7): 1-11.
  ZHU Lixuan, WAN Can, JU Ping, et al. Review on power system interval analysis considering uncertainty[J]. Electric Power Automation Equipment, 2023, 43(7): 1-11.
[20] 柳璐, 程浩忠, 吴耀武, 等. 面向高比例可再生能源的输电网规划方法研究进展与展望[J]. 电力系统自动化, 2021, 45(13): 176-183.
  LIU Lu, CHENG Haozhong, WU Yaowu, et al. Research progress and prospects of transmission expansion planning method for high proportion of renewable energy[J]. Automation of Electric Power System, 2021, 45(13): 176-183.
[21] 李锦江, 向先波, 刘传, 等. 基于预设性能制导律的欠驱动AUV海底地形鲁棒时滞跟踪控制[J]. 上海交通大学学报, 2022, 56(7): 944-952.
  LI Jinjiang, XIANG Xianbo, LIU Chuan, et al. Robust seabed terrain following control of underactuated AUV with prescribed performance guidance law under time delay of actuator[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 944-952.
[22] GARCíA-BERTRAND R, MíNGUEZ R. Dynamic robust transmission expansion planning[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2618-2628.
[23] JABR R A. Robust transmission network expansion planning with uncertain renewable generation and loads[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4558-4567.
[24] SELVACHANDRAN G, GARG H, ALAROUD M H S, et al. Similarity measure of complex vague soft sets and its application to pattern recognition[J]. International Journal of Fuzzy Systems, 2018, 20(6): 1901-1914.
[25] TIAN S X, CHENG H Z, ZENG P L, et al. Construction of cost-benefit evaluation indicator system of UHV power grid[J]. International Journal of Power & Energy Systems, 2016, 36(2): 62-70.
Outlines

/