Journal of Shanghai Jiaotong University >
Parallel Computation and Optimization of Proton Exchange Membrane Fuel Cell Models
Received date: 2023-12-21
Revised date: 2024-06-25
Accepted date: 2024-07-11
Online published: 2024-07-25
To achieve highly efficient and precise simulation of proton exchange membrane fuel cells (PEMFCs) and stacks, this paper develops a three-dimensional coupled one-dimensional hybrid dimension modeling strategy based on the Fluent solver and conducts an in-depth analysis of the impact of the Fluent built-in global summations macro PRF_GRSUM on the parallel solving efficiency of fuel cell simulation. It also proposes two new parallel strategies including the data compression synchronization method and the data filter marker method, based on the data coupling characteristics of the hybrid dimension model. Then, this paper describes the principles and processes of three data synchronization methods in detail, and investigates the impact of these methods on the solving efficiency of parallel computation of PEMFC models. The results show that the data filter marker method can achieve an acceleration ratio up to 112.5 times compared with PRF_GRSUM macro when simulating a PEMFC stack with a hundred cells.
LIU Ke , HAO Liang , GENG Jun , CHEN Xun , LU Wei . Parallel Computation and Optimization of Proton Exchange Membrane Fuel Cell Models[J]. Journal of Shanghai Jiaotong University, 2025 , 59(11) : 1754 -1762 . DOI: 10.16183/j.cnki.jsjtu.2023.636
| [1] | BARBIR F. PEM 燃料电池:理论与实践[M]. 第2版. 北京: 机械工业出版社, 2016. |
| BARBIR F. PEM Fuel cells: Theory and practice[M]. 2nd ed. Beijing: China Machine Press, 2016. | |
| [2] | YUAN S, ZHAO C F, CAI X Y, et al. Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management[J]. Progress in Energy & Combustion Science, 2023, 96: 101075. |
| [3] | YOU J B, ZHENG Z F, CHENG X J, et al. Insight into oxygen transport in solid and high-surface-area carbon supports of proton exchange membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 21457-21466. |
| [4] | SHEN J, TU Z K, CHAN S H. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel[J]. Applied Thermal Engineering, 2019, 149: 1408-1418. |
| [5] | 郑宇. PEMFC传热传质研究[D]. 济南: 山东大学, 2021. |
| ZHENG Yu. Research on heat and mass transfer of PEMFC[D]. Jinan: Shandong University, 2021. | |
| [6] | 胡经纬. 质子交换膜燃料电池的电化学和数值模拟研究[D]. 大连: 中国科学院大连化学物理研究所, 2006. |
| HU Jingwei. Electrochemical and mathematical model studies on PEMFC[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2006. | |
| [7] | LIU Z X, MAO Z Q, WANG C. A two dimensional partial flooding model for PEMFC[J]. Journal of Power Sources, 2006, 158(2): 1229-1239. |
| [8] | SHEN J, XU L, CHANG H W, et al. Partial flooding and its effect on the performance of a proton exchange membrane fuel cell[J]. Energy Conversion & Management, 2020, 207: 112537. |
| [9] | HAO L, CHENG P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers[J]. Journal of Power Sources, 2009, 186(1): 104-114. |
| [10] | DU Z P, STEINDL C, JAKUBEK S. Efficient two-step parametrization of a control-oriented zero-dimensional polymer electrolyte membrane fuel cell model based on measured stack data[J]. Processes, 2021, 9(4): 713. |
| [11] | ROWE A, LI X G. Mathematical modeling of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2001, 102(1/2): 82-96. |
| [12] | BERNARDI D M, VERBRUGGE M W. A mathematical model of the solid-polymer-electrolyte fuel cell[J]. Journal of the Electrochemical Society, 1992, 139(9): 2477-2491. |
| [13] | SPRINGER T E, ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8): 2334-2342. |
| [14] | SINGH D, LU D M, DJILALI N. A two-dimensional analysis of mass transport in proton exchange membrane fuel cells[J]. International Journal of Engineering Science, 1999, 37(4): 431-452. |
| [15] | BAPAT C J, THYNELL S T. Effect of anisotropic electrical resistivity of gas diffusion layers (GDLs) on current density and temperature distribution in a polymer electrolyte membrane (PEM) fuel cell[J]. Journal of Power Sources, 2008, 185(1): 428-432. |
| [16] | UM S, WANG C Y. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2004, 125(1): 40-51. |
| [17] | ROSLI M I, LIM B H, MAJLAN E H, et al. Performance analysis of PEMFC with single-channel and multi-channels on the impact of the geometrical model[J]. Energies, 2022, 15(21): 7960. |
| [18] | BAO C, BESSLER W G. A computationally efficient steady-state electrode-level and 1D+1D cell-level fuel cell model[J]. Journal of Power Sources, 2012, 210: 67-80. |
| [19] | SCHUMACHER J O, ELLER J, SARTORIS G, et al. 2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures[J]. Mathematical & Computer Modelling of Dynamical Systems, 2012, 18(4): 355-377. |
| [20] | CORDINER S, MULONE V, ROMANELLI F. Thermal-fluid-dynamic simulation of a proton exchange membrane fuel cell using a hierarchical 3D-1D approach[J]. Journal of Fuel Cell Science & Technology, 2007, 4(3): 317-327. |
| [21] | XIE B, ZHANG G B, JIANG Y, et al. “3D+1D” modeling approach toward large-scale PEM fuel cell simulation and partitioned optimization study on flow field[J]. eTransportation, 2020, 6: 100090. |
| [22] | FERREIRA R B, FALC?O D S, OLIVEIRA V B, et al. 1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell[J]. Applied Energy, 2017, 203: 474-495. |
| [23] | ANSYS. ANSYS Fluent customization manual[M]. Canonsburg, USA: ANSYS, 2023. |
| [24] | LIU K, STEFANI F, WEBER N, et al. Numerical and experimental investigation of electro-vortex flow in a cylindrical container[J]. Magnetohydrodynamics, 2020, 56(1): 27-42. |
| [25] | ANSYS. ANSYS Fluent user’s guide[M]. Canonsburg, USA: ANSYS, 2023. |
/
| 〈 |
|
〉 |