Journal of Shanghai Jiaotong University >
Dynamic Response Difference of Single Pile and Pile Group with Variable Section in Variation of Seismic Subsidence Soil Layer
Received date: 2022-11-01
Revised date: 2022-12-13
Accepted date: 2022-12-21
Online published: 2024-07-26
In order to study the difference of dynamic response between large diameter variable section single pile and pile group foundations in seismic subsidence soil with different thicknesses under ground motion, based on the Xiang’an Bridge of Xiamen Second East Channel, a shaking table model test was conducted to study the difference of dynamic response of soil subsidence, horizontal displacement of pile top, acceleration of pile body and bending moment between single pile and pile group foundation when the thickness of seismic subsidence soil layer is 30, 40, and 50 cm. The results show that with the increase of the thickness of seismic subsidence layer, the seismic subsidence, horizontal displacement of pile top, acceleration and bending moment of single pile and pile group foundations increase gradually, and the acceleration and bending moment change abruptly at variable section. In the seismic subsidence layer with the same thickness, the seismic subsidence of soil around pile group foundation is larger than that of single pile, but the acceleration of pile group foundation, horizontal displacement of pile top and bending moment of pile body are smaller than those of single pile. It is suggested that in the design of pile foundation in seismic subsidence site, the difference of dynamic response between variable section single pile and pile group should be mainly considered to ensure the seismic performance of pile foundation.
FENG Zhongju, WANG Wei, ZHANG Cong, ZHU Jixin, WANG Yiran, MENG Yingying . Dynamic Response Difference of Single Pile and Pile Group with Variable Section in Variation of Seismic Subsidence Soil Layer[J]. Journal of Shanghai Jiaotong University, 2024 , 58(7) : 1086 -1096 . DOI: 10.16183/j.cnki.jsjtu.2022.435
[1] | DONG Y X, FENG Z J, HE J B, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock And Vibration, 2019, 19(2): 1-16. |
[2] | 谭婕, 王奎华, 涂园, 等. 大直径变截面桩速度波衰减特性研究与应用[J]. 岩石力学与工程学报, 2021, 40(2): 419-431. |
TAN Jie, WANG Kuihua, TU Yuan, et al. Velocity wave attenuation characteristics of large-diameter variable section piles and the application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 419-431. | |
[3] | FENG Z J, HU H B, DONG Y X, et al. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019. 9(14): 28-40. |
[4] | ZHANG C, FENG Z J, GUAN Y H, et al. Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, 20(12): 1-12. |
[5] | DONG Y X, FENG Z J, HE J B, et al. The horizontal bearing capacity of composite concrete-filled steel tube piles[J]. Advances in Civil Engineering, 2020, 20(16): 1-15. |
[6] | 冯忠居, 张聪, 何静斌, 等. 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237. |
FENG Zhongju, ZHANG Cong, HE Jingbin, et al. Shaking table test of time-history response of rock-socketed single pile under strong earthquake[J]. Rock and Soil Mechanics, 2021, 42(12): 3227-3237. | |
[7] | 江杰, 柴文成, 欧孝夺, 等. 基于Timoshenko-Pasternak 模型的多向受荷桩水平动力响应分析[J]. 岩石力学与工程学报, 2022, 41(1): 172-185. |
JIANG Jie, CHAI Wencheng, OU Xiaoduo, et al. Horizontal dynamic response analysis of multi-directional loaded piles based on Timoshenko-Pasternak model[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 172-185. | |
[8] | 辛宇, 崔春义, 许成顺, 等. 双参数层状地基中大直径单桩水平振动解析解与分析[J]. 振动工程学报, 2022, 35(3): 585-594. |
XIN Yu, CUI Chunyi, XU Chengshun, et al. Analytical analysis and solution of horizontal vibration of large diameter single pile in two-parameter layered soils[J]. Journal of Vibration Engineering, 2022, 35(3): 585-594. | |
[9] | 王奎华, 郭海超, 高柳, 等. 三维波动土中带承台单桩的纵向振动特性研究[J]. 岩石力学与工程学报, 2018, 37(2): 497-505. |
WANG Kuihua, GUO Haichao, GAO Liu, et al. Longitudinal vibration of single pile with cushion cap in three-dimensional layered surrounding soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (2): 497-505. | |
[10] | ROVITHIS E, MYLONAKIS G, PITILAKIS K. Dynamic. pngfness and kinematic response of single piles in inhomogeneous soil[J]. Bulletin of Earthquake Engineering, 2013, 11(6): 1949-1972. |
[11] | 庄海洋, 赵畅, 于旭, 等. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究[J]. 岩土工程学报, 2022, 44(6): 979-987. |
ZHUANG Haiyang, ZHAO Chang, YU Xu, et al. Earthquake responses of piles-soil dynamic interaction system for base-isolated structure system based on shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 979-987. | |
[12] | 许成顺, 豆鹏飞, 杜修力, 等. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究[J]. 建筑结构学报, 2022, 43(5): 185-194. |
XU Chengshun, DOU Pengfei, DU Xiuli, et al. Dynamic interaction and seismic response of non-liquefiable soil-pile group foundation-structure system from shaking table test[J]. Journal of Building Structures, 2022, 43 (5): 185-194. | |
[13] | LEI S U, TANG L, LING X Z, et al. Responses of reinforced concrete pile group in two-layered liquefied soils: Shake-table investigations[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2015, 16(2): 93-104. |
[14] | 李雨润, 闫志晓, 张健, 等. 饱和砂土中直群桩动力响应离心机振动台试验与简化数值模型研究[J]. 岩石力学与工程学报, 2020, 39(6): 1252-1264. |
LI Yurun, YAN Zhixiao, ZHANG Jian, et al. Centrifugal shaking table test and numerical simulation of dynamic responses of straight pile group in saturated sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1252-1264. | |
[15] | 张恒源, 钱德玲, 沈超, 等. 水平和竖向地震作用下液化场地群桩基础动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914. |
ZHANG Hengyuan, QIAN Deling, SHEN Chao, et al. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations[J]. Rock and Soil Mechanics, 2020, 41(3): 905-914. | |
[16] | RAHMANI A, PAK A. Dynamic behavior of pile foundations under cyclic loading in liquefiable soils[J]. Computers & Geotechnics, 2012, 40(3): 114-126. |
[17] | 江辉, 王志, 白晓宇, 等. 近、远场强震下深水桥梁群桩基础的非线性响应及损伤特性[J]. 振动与冲击, 2017, 36(24): 13-22. |
JIANG Hui, WANG Zhi, BAI Xiaoyu, et al. Nonlinear responses and damage characteristics for group-piles foundation of a deep-water bridge under strong near-fault and far-field earthquakes[J]. Journal of Vibration and Shock, 2017, 36(24): 13-22. | |
[18] | 田兆阳, 李平, 朱胜, 等. 强震作用下软土场地桩基负摩阻力振动台试验研究[J]. 岩土工程学报, 2022, 44(3): 550-559. |
TIAN Zhaoyang, LI Ping, ZHU Sheng, et al. Shaking table tests on negative friction of piles in soft soils under strong earthquake motion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 550-559. | |
[19] | 孙军杰. 黄土场地震陷与桩基负摩阻力现场试验研究[J]. 岩石力学与工程学报, 2011, 30(6): 1297. |
SUN Junjie. Study of seismic subsidence for loess and negative skin friction along piles by field test[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1297. | |
[20] | 叶朝良, 梁凯芳, 王向阳. 湿陷性黄土区桩基负摩阻力统计分析及建议[J]. 铁道工程学报, 2018, 35(1): 6-10. |
YE Chaoliang, LIANG Kaifang, WANG Xiangyang. Statistical analysis and proposal on pile negative friction in collapsible loess areas[J]. Journal of Railway Engineering Society, 2018, 35(1): 6-10. | |
[21] | 黄雪峰, 杨校辉, 殷鹤, 等. 湿陷性黄土场地湿陷下限深度与桩基中性点位置关系研究[J]. 岩土力学, 2015, 36 (Sup.2): 296-302. |
HUANG Xuefeng, YANG Xiaohui, YIN He, et al. Study of relationship between maximum collapsing depth and neutral point position of pile foundation in collapsible loess ground[J]. Rock and Soil Mechanics, 2015, 36 (Sup.2): 296-302. | |
[22] | 中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2002. |
Ministry of Construction of the People’s Republic of China. Geotechnical engineering survey specifications: GB 50021—2001[S]. Beijing: China Construction Industry Press, 2002. | |
[23] | 袁林娟, 刘小生, 汪小刚, 等. 振动台土-箱结构模型动力特性及反应的解析分析[J]. 岩土工程学报, 2012, 34(6): 1038-1042. |
YUAN Linjuan, LIU Xiaosheng, WANG Xiaogang, et al. Analytic solution of dynamic characteristics and responses of soil-box model for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1038-1042. | |
[24] | 吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29. |
Lü Xilin, CHEN Yueqing, CHEN Bo, et al. Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 20-29. | |
[25] | 李培振, 陈跃庆, 吕西林, 等. 较硬分层土-桩基-结构相互作用体系振动台试验[J]. 同济大学学报(自然科学版), 2006, 34(3): 307-313. |
LI Peizhen, CHEN Yueqing, Lü Xilin, et al. Shaking table testing of hard layered soil-pile structure interaction system[J]. Journal of Tongji University (Natural Science), 2006, 34(3): 307-313. | |
[26] | 张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动, 1997, 17(2): 52-58. |
ZHANG Minzheng. Study on similitude laws for shaking table tests[J]. Earthquake Engineering and Engineering Dynamics, 1997, 17(2): 52-58. | |
[27] | 黄维平, 邬瑞锋, 张前国. 配重不足时的动力试验模型与原型相似关系问题的探讨[J]. 地震工程与工程振动, 1994, 14(4): 64-71. |
HUANG Weiping, WU Ruifeng, ZHANG Qianguo. Study on the analogy between scale models with less ballast and their prototypes under shaking table test[J]. Earthquake Engineering and Engineering Vibration, 1994, 14(4): 64-71. | |
[28] | KORRE E, ABDOUN T H, ZEGHAL M. Verification of generalized scaling laws: Two centrifuge tests of a liquefiable sloping deposit[J]. Soil Dynamics and Earthquake Engineering, 2020, 14(3): 23-30. |
[29] | 李德寅, 王邦楣, 林亚超. 结构模型实验[M]. 北京: 科学出版社, 1996. |
LI Deyin, WANG Bangmei, LIN Yachao. Structural model experiment[M]. Beijing: Science Press, 1996. | |
[30] | 高孟潭. 中国地震动参数区划图[M]. 北京: 中国质检出版社, 2015. |
GAO Mengtan. Zoning map of ground motion parameters in China[M]. Beijing: China Quality Inspection Press, 2015. | |
[31] | 胡铖波, 梅岭, 梅国雄, 等. 桩土模型中土体边界选取的有限元分析[J]. 建筑科学, 2009, 25(9): 18-20. |
HU Chengbo, MEI Ling, MEI Guoxiong, et al. Finite element method for selecting the soil boundary in the model of pile-soil[J]. Building Science, 2009, 25(9): 18-20. |
/
〈 |
|
〉 |