Electronic Information and Electrical Engineering

Backstepping Control for Attitude Stabilization of Hexacopter Based on Nonlinear Feedforward Compensation

  • LI Shuheng ,
  • HE Defeng ,
  • LIAO Fei ,
  • MU Jianbin
Expand
  • 1 College of Information Engineering, Zhejiang University of Technology, Hangzhou 310000, China
    2 Aerospace Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China

Received date: 2023-12-29

  Revised date: 2024-03-21

  Accepted date: 2024-04-10

  Online published: 2024-05-08

Abstract

To address the attitude stabilization control problem of hexacopters under unknown disturbances, a nonlinear feedforward compensation backstepping control method for attitude stabilization of hexacopter is proposed. A nonlinear unknown input observer is employed to estimate the unknown external disturbance of the unmanned aerial vehicle. Then the Sigmoid tracking differentiator is introduced as a feedforward compensator to counteract the estimated disturbance, thereby enhancing the performance of the backstepping controller of the hexacopter. Furthermore, the stability of the attitude tracking deviation closed-loop system are established. Comparative simulation experiments verify the effectiveness and superiority of the proposed method.

Cite this article

LI Shuheng , HE Defeng , LIAO Fei , MU Jianbin . Backstepping Control for Attitude Stabilization of Hexacopter Based on Nonlinear Feedforward Compensation[J]. Journal of Shanghai Jiaotong University, 2025 , 59(12) : 1891 -1900 . DOI: 10.16183/j.cnki.jsjtu.2023.652

References

[1] SHAO X, XU L, ZHANG W. Quantized control capable of appointed-time performances for quadrotor attitude tracking: Experimental validation[J]. IEEE Transactions on Industrial Electronics, 2021, 69(5): 5100-5110.
[2] CHEN M, XIONG S, WU Q. Tracking flight control of quadrotor based on disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(3): 1414-1423.
[3] NASCIMENTO T P, SASKA M. Position and attitude control of multi-rotor aerial vehicles: A survey[J]. Annual Reviews in Control, 2019, 48: 129-146.
[4] ZHANG X, WANG Y, ZHU G, et al. Compound adaptive fuzzy quantized control for quadrotor and its experimental verification[J]. IEEE Transactions on Cybernetics, 2020, 51(3): 1121-1133.
[5] GUO K, JIA J, YU X, et al. Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances[J]. Control Engineering Practice, 2020, 102: 104560.
[6] KATIGBAK C N R, GARCIA J R B, GUTANG J E D, et al. Autonomous trajectory tracking of a quadrotor UAV using PID controller[C]// International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). New York, USA: IEEE, 2016: 1-5.
[7] HENG X, CABECINHAS D, CUNHA R, et al. A trajectory tracking LQR controller for a quadrotor[C]// Design and Experimental Evaluation (DATE). Macao, China: IEEE Region Ten Conference, 2015: 1-7.
[8] DING X, WANG X, YU Y, et al. Dynamics modeling and trajectory tracking control of a quadrotor unmanned aerial vehicle[J]. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(2): 021004.
[9] BASRI M A M, HUSAIN A R, DANAPALASINGAM K A. Stabilization and trajectory tracking control for underactuated quadrotor helicopter subject to wind-gust disturbance[J]. Sadhana, 2015, 40: 1531-1553.
[10] YOUNES Y A, DRAK A, NOURA H, et al. Quadrotor position control using cascaded adaptive integral backstepping controllers[J]. Applied Mechanics and Materials, 2014, 565: 98-106.
[11] WANG H, CHEN M. Sliding mode attitude control for a quadrotor micro unmanned aircraft vehicle using disturbance observer[C]// Chinese Guidance, Navigation & Control Conference (CGNCC). Yantai, China: IEEE, 2014: 568-573.
[12] 刘锦涛, 吴文海, 李静, 等. 四旋翼无人机SO(3)滑模变结构姿态控制器设计[J]. 控制与决策, 2016, 31(6): 1057-1064.
  LIU Jintao, WU Wenhai, LI Jing, et al. Sliding mode variable structure attitude controller design of quadrotor UAVs on SO(3)[J]. Control and Decision, 2016, 31(6): 1057-1064.
[13] ESKANDARPOUR A, SHARF I. A constrained error-based MPC for path following of quadrotor with stability analysis[J]. Nonlinear Dynamics, 2020, 99: 899-918.
[14] SARIYILDIZ E, OBOE R, OHNISHI K. Disturbance observer-based robust control and its applications: 35th anniversary overview[J]. IEEE Transactions on Industrial Electronics, 2019, 67(3): 2042-2053.
[15] 杨柳, 刘金琨. 基于干扰观测器的四旋翼无人机轨迹跟踪鲁棒控制[J]. 飞行力学, 2015, 33(4): 328-333.
  YANG Liu, LIU Jinkun. Disturbance observer-based robust trajectory tracking control for a quadrotor UAV[J]. Flight Dynamics, 2015, 33(4): 328-333.
[16] SHARMA V, AGRAWAL V, SHARMA B B, et al. Unknown input nonlinear observer design for continuous and discrete time systems with input recovery scheme[J]. Nonlinear Dynamics, 2016, 85(1): 645-658.
[17] 刘晨阳, 吴大伟, 郭一泽, 等. 不确定强耦合下四旋翼姿态鲁棒自适应控制[J]. 航空学报, 2023, 44 (1): 150-159.
  LIU Chenyang, WU Dawei, GUO Yize, et al. Robust adaptive attitude control of quadrotor with uncertain strong coupling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 150-159.
[18] 李俊芳, 李峰, 吉月辉, 等. 四旋翼无人机轨迹稳定跟踪控制[J]. 控制与决策, 2020, 35(2): 349-356.
  LI Junfang, LI Feng, JI Yuehui, et al. Trajectory stable tracking control of quadrotor UAV[J]. Control and Decision, 2020, 35(2): 349-356.
[19] LEVANT A. Robust exact differentiation via sliding mode technique[J]. Automatica, 1998, 34(3): 379-384.
[20] WANG X, CHEN Z, YANG G. Finite-time-convergent differentiator based on singular perturbation technique[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1731-1737.
[21] SHAO X, WANG H. Back-stepping robust trajectory linearization control for hypersonic reentry vehicle via novel tracking differentiator[J]. Journal of the Franklin Institute, 2016, 353(9): 1957-1984.
[22] SHAO X, LIU J, YANG W, et al. Augmented nonlinear differentiator design[J]. Mechanical Systems and Signal Processing, 2017, 90: 268-284.
[23] SHAO X, LIU J, WANG H. Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[J]. Mechanical Systems and Signal Processing, 2018, 104(1): 631-647.
[24] XING Z, ZHANG Y, SU C Y. Active wind rejection control for a quadrotor UAV against unknown winds[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8956-8968.
[25] 孙妙平, 刘静静, 年晓红, 等. 基于区间矩阵的四旋翼无人机鲁棒跟踪控制[J]. 控制理论与应用, 2017, 34(2): 168-178.
  SUN Miaoping, LIU Jingjing, NIAN Xiaohong, et al. Robust tracking control of a quad-rotor unmanned aerial vehicle via interval matrix[J]. Control Theory and Applications, 2017, 34(2): 168-178.
[26] MUTHUSAMY P K, SUTHAR B, MUTHUSAMY R, et al. Self-organizing BFBEL control system for a UAV under wind disturbance[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 5021-5033.
[27] XIAN B, DIAO C, ZHAO B, et al. Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation[J]. Nonlinear Dynamics, 2015, 79: 2735-2752.
[28] RAFFO G V, ORTEGA M G, RUBIO F R. An integral predictive/nonlinear H control structure for a quadrotor helicopter[J]. Automatica, 2010, 46(1): 29-39.
[29] WANG B, YU X, MU L, et al. Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[J]. Mechanical Systems and Signal Processing, 2019, 120(1): 727-743.
[30] YANG Y, GORBACHEV S, ZHAO B, et al. Predictor-based neural attitude control of a quadrotor with disturbances[J]. IEEE Transactions on Industrial Informatics, 2023, 20(1): 169-178.
[31] 吴大方, 赵星, 贺小帆, 等. 飞机起落架落震试验中机轮水平冲击载荷测量方法的研究[J]. 机械强度, 2010, 32(5): 729-734.
  WU Dafang, ZHAO Xing, HE Xiaofan, et al. Study on measurement method of horizontal impact load in aircraft landing gear drop test[J]. Journal of Mechanical Strength, 2010, 32(5): 729-734.
[32] BOYD S, VANDENBERGHE L. Convex optimization[M]. New York, USA: Cambridge University Press, 2004.
[33] ZEMOUCHE A, BOUTAYEB M, BARA G I. Observer design for nonlinear systems: An approach based on the differential mean value theorem[C]// Conference on Decision and Control (CDC). Secille, Spain:IEEE, 2005: 6353-6358.
Outlines

/