Journal of Shanghai Jiaotong University >
A Mixed Distribution Model of Pointing Error of Aircraft
Received date: 2022-05-03
Revised date: 2022-08-29
Accepted date: 2022-08-29
Online published: 2024-04-30
In the space exploration mission, the aircraft will be affected by mechanical shocks, tracking noise and other factors to cause angular micro-vibration, so that the antenna pointing error is always non-zero, which will affect the communication link. Aimed at the disadvantage that typical single distribution models of pointing error such as Gaussian distribution, Rayleigh distribution and Rice distribution ignore the common impact of multiple error sources, a mixed distribution model of pointing error is proposed, which takes multiple error sources into account at the same time, and greatly improves the accuracy of the model. First, the pointing error signal is fitted according to the power spectral density of angular micro vibration signals of multiple spacecraft OLYMPUS, ETS-VI, OICETS and MICIUS. Then, the optimal distribution model is determined by comparing the determination coefficient R2 of the single distribution model and the mixed distribution model with the fitting signal of pointing error. The results show that the mixed distribution model composed of Gaussian distribution and Rice distribution has the highest fitting degree. Taking the Olympus aircraft as an example, the fitting degree of the Gaussian-Rice mixed distribution model is 27.44% higher than that of the single distribution model Rayleigh model, and the bit error rate deviation is reduced by 2.87 dB.
CAO Dongping, JING Qingfeng, ZHONG Weizhi . A Mixed Distribution Model of Pointing Error of Aircraft[J]. Journal of Shanghai Jiaotong University, 2024 , 58(4) : 449 -460 . DOI: 10.16183/j.cnki.jsjtu.2022.138
[1] | GHALI F, FASSI B, DRIZ S. Pointing error angle effect on the performance of 10 Gbps ultra-long satellite optical wireless communication[C]// 2021 Palestinian International Conference on Information and Communication Technology. Gaza, Palestine: IEEE, 2021: 88-91. |
[2] | FARID A A, HRANILOVIC S. Outage capacity optimization for free-space optical links with pointing errors[J]. Journal of Lightwave Technology, 2007, 25(7): 1702-1710. |
[3] | JURADO-NAVAS A, GARRIDO-BALSELLS J M, PARIS J F, et al. Impact of pointing errors on the performance of generalized atmospheric optical channels[J]. Optics Express, 2012, 20(11): 12550-12562. |
[4] | 刘锡国, 刘敏, 毛忠阳, 等. 指向误差下高斯光束几何衰减模型分析[J]. 电子学报, 2021, 49(10): 1893-1899. |
LIU Xiguo, LIU Min, MAO Zhongyang, et al. Analysis of geometric attenuation model of Gaussian beam under pointing error[J]. Acta Electronica Sinica, 2021, 49(10): 1893-1899. | |
[5] | GAPPMAIR W, HRANILOVIC S, LEITGEB E. OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by hoyt distributions[J]. IEEE Communications Letters, 2011, 15(8): 875-877. |
[6] | ALQUWAIEE H, YANG H C, ALOUINI M S. On the asymptotic capacity of dual-aperture FSO systems with generalized pointing error model[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6502-6512. |
[7] | BOLUDA-RUIZ R, GARCíA-ZAMBRANA A, CASTILLO-VáZQUEZ B, et al. On the effect of correlated sways on generalized misalignment fading for terrestrial FSO links[J]. IEEE Photonics Journal, 2017, 9(3): 1-14. |
[8] | ARNON S, KOPEIKA N S. Laser satellite communication network-vibration effect and possible solutions[J]. Proceedings of the IEEE, 1997, 85(10): 1646-1661. |
[9] | 王进. 空间光通信ATP跟瞄误差分析及控制[D]. 成都: 电子科技大学, 2006. |
WANG Jin. Analysis and control of ATP tracking error in space optical communication[D]. Chengdu: University of Electronic Science and Technology of China, 2006. | |
[10] | TRENT V, GREENE M, HUNG S. Precision pointing error analysis in a satellite optical communication optical system[C]// [1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory. Cookeville, USA: IEEE, 1990: 190-194. |
[11] | ARNON S. Minimization of outage probability of WiMAX link supported by laser link between a high-altitude platform and a satellite[J]. Journal of the Optical Society of America A, Optics, Image Science, & Vision, 2009, 26(7): 1545-1552. |
[12] | POLISHUK A, ARNON S. Optimization of a laser satellite communication system with an optical preamplifier[J]. Journal of the Optical Society of America A, Optics, Image Science, & Vision, 2004, 21(7): 1307-1315. |
[13] | TOYOSHIMA M, TAKAYAMA Y, KUNIMORI H, et al. In-orbit measurements of spacecraft microvibrations for satellite laser communication links[J]. Optical Engineering, 2010, 49(8): 083604. |
[14] | WITTIG M E, VAN HOLTZ L, TUNBRIDGE D E L, et al. In-orbit measurements of microaccelerations of ESA’s communication satellite Olympus[C]// OE/LASE’90. Proc SPIE 1218, Free-Space Laser Communication Technologies II. Los Angeles, USA: SPIE, 1990: 205-214. |
[15] | TOYOSHIMA M, ARAKI K. In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment[J]. Optical Engineering, 2001, 40(5): 827-832. |
[16] | WANG X, LI C K, JIA J J, et al. Angular micro-vibration of the Micius satellite measured by an optical sensor and the method for its suppression[J]. Applied Optics, 2021, 60(7): 1881-1887. |
[17] | 陈纯毅, 杨华民, 佟首峰, 等. 空间光通信卫星平台振动实时模拟[J]. 系统仿真学报, 2007, 19(16): 3834-3837. |
CHEN Chunyi, YANG Huamin, TONG Shoufeng, et al. Real-time simulation of satellite-platform vibration of space optical communication[J]. Journal of System Simulation, 2007, 19(16): 3834-3837. | |
[18] | 罗文嘉. 星间激光通信终端控制系统设计及其性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LUO Wenjia. Design and performance analysis of the terminal control system for inter-satellite laser communication[D]. Harbin: Harbin Institute of Technology, 2016. | |
[19] | 王小英, 陈常龙, 尹俊平. 正态分布和瑞利分布混合情形下的参数估计及分类问题[J]. 数学建模及其应用, 2016, 5(3): 25-30. |
WANG Xiaoying, CHEN Changlong, YIN Junping. The parameter estimation and classification under mixture model of normal and Rayleigh distribution[J]. Mathematical Modeling & Its Applications, 2016, 5(3): 25-30. | |
[20] | 胡耀金, 卞鸿巍, 王荣颖, 等. 基于高斯混合模型的光纤罗经误差概率分布建模[J]. 系统工程与电子技术, 2021, 43(6): 1644-1650. |
HU Yaojin, BIAN Hongwei, WANG Rongying, et al. Modeling of error probability distribution of fiber-optic gyrocompass based on Gaussian mixture model[J]. Systems Engineering & Electronics, 2021, 43(6): 1644-1650. | |
[21] | TEKB?Y?K K, EKTI A R, KURT G K, et al. Modeling and analysis of short distance sub-terahertz communication channel via mixture of gamma distribution[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 2945-2954. |
[22] | 王福昌, 曹慧荣, 朱红霞. 经典最小二乘与全最小二乘法及其参数估计[J]. 统计与决策, 2009(1): 16-17. |
WANG Fuchang, CAO Huirong, ZHU Hongxia. Classical least squares and total least squares and their parameter estimation[J]. Statistics & Decision, 2009(1): 16-17. | |
[23] | LI X, LIU Y F, WANG J F, et al. Influence of pointing error and detector noise on the bit error rate performance in ground-to-satellite laser uplink communication system[C]// 2017 3rd IEEE International Conference on Computer & Communications. Chengdu, China: IEEE, 2017: 240-243. |
[24] | 张秉华, 张守辉. 光电成像跟踪系统[M]. 成都: 电子科技大学出版社, 2003. |
ZHANG Binghua, ZHANG Shouhui. Photoelectric imaging tracking system[M]. Chengdu: Chengdu University of Electronic Science and Technology Press, 2003. | |
[25] | BARO M, CONIJN E, DANNENBERG J, et al. Apportionment and analysis of satellite pointing performance: Illustrative use case of space systems engineering[C]// IEEE International Symposium on Systems Engineering. Vienna, Austria: IEEE, 2017: 1-6. |
[26] | MADNI A, BRADLEY N, CERVANTES D, et al. Pointing error budget development and methodology on the psyche project[C]// 2021 IEEE Aerospace Conference (50100). Big Sky, USA: IEEE, 2021: 1-18. |
/
〈 |
|
〉 |