New Type Power System and the Integrated Energy

Information Gap Decision Theory-Spectrum Clustering Typical Scenario Generation Considering Source Load Uncertainty

  • ZHANG Jiamin ,
  • CAI Ye ,
  • TANG Xiafei ,
  • TAN Yudong ,
  • CAO Yijia ,
  • LI Junxiong
Expand
  • 1 National Key Laboratory of Disaster Prevention and Mitigation, Changsha University of Science and Technology, Changsha 410114, China
    2 Economic and Technical Research Institute, State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China
    3 State Grid Changsha Power Supply Company, Changsha 410015, China

Received date: 2023-11-17

  Revised date: 2024-02-01

  Accepted date: 2024-03-18

  Online published: 2024-04-01

Abstract

The high proportion of new energy and dynamic load brings significant bidirectional uncertainty of source and load to power system. The strong uncertainty makes scheduling planning face high dimensional decision space and increases planning risk. Therefore, an information gap decision theory (IGDT)-spectral clustering typical scenario generation method considering the uncertainty of source load is proposed to provide a more accurate planning scenario for the determination of the operation mode of multi-source joint systems. First, the source load uncertainty can be quantified effectively by the IGDT theory without considering the uncertain quantitative probability distribution. The source load fluctuation range is described using the IGDT robust model and the IGDT chance model, and the original scenario representing each uncertainty situation is generated using the Latin hypercube sampling method to ensure the adequacy and accuracy of sample space. Then, to address the huge scale of the original scenario caused by the uncertainty of the source load, a spectral clustering method considering the adjustment ability of the system is introduced to mine the feature vectors of different source load fluctuations which have an important impact on the scheduling decision to reduce the complex original scenario set to a representative typical scenario of the source load. Finally, the simulation analysis of the actual system and operation data of a provincial power grid shows that compared with the traditional spectral clustering method, the proposed method generates four more typical scenarios after considering the bidirectional uncertainty of source load, the comprehensive average Pearson correlation coefficient is increased by 8.76%, the comprehensive average Euclidian distance is reduced by 43.48%, and the clustering scenario is more similar to the actual scenario.

Cite this article

ZHANG Jiamin , CAI Ye , TANG Xiafei , TAN Yudong , CAO Yijia , LI Junxiong . Information Gap Decision Theory-Spectrum Clustering Typical Scenario Generation Considering Source Load Uncertainty[J]. Journal of Shanghai Jiaotong University, 2025 , 59(11) : 1625 -1636 . DOI: 10.16183/j.cnki.jsjtu.2023.580

References

[1] QIU S, LEI T, WU J T, et al. Energy demand and supply planning of China through 2060[J]. Energy, 2021, 234: 121193.
[2] 程奇. 弗兰克·奈特主要经济思想研究[D]. 杭州: 浙江大学, 2018.
  CHENG Qi. A study of Frank Knight’s main economic thoughts[D]. Hangzhou: Zhejiang University, 2018.
[3] 张宁, 杜尔顺, 李晖, 等. 强不确定环境下的电力系统优化规划[M]. 北京: 中国电力出版社, 2021: 16-39.
  ZHANG Ning, DU Ershun, LI Hui, et al. Optimal planning of power system under strong uncertainty environment[M]. Beijing: China Electric Power Press, 2021: 16-39.
[4] 李亮, 唐巍, 白牧可, 等. 考虑时序特性的多目标分布式电源选址定容规划[J]. 电力系统自动化, 2013, 37(3): 58-63.
  LI Liang, TANG Wei, BAI Muke, et al. Multi-objective locating and sizing of distributed generators based on time-sequence characteristics[J]. Automation of Electric Power Systems, 2013, 37(3): 58-63.
[5] 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用[J]. 中国电机工程学报, 2016, 36(15): 4064-4072.
  DING Ming, XIE Jiaolong, LIU Xinyu, et al. The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J]. Proceedings of the CSEE, 2016, 36(15): 4064-4072.
[6] POULADKHAY M, MIRHOSSEINI MOGHADDAM M, SAHAB A. Market-based two-stage stochastic scheduling programming considering demand side provider and wind power penetration[J]. Iranian Journal of Science & Technology, Transactions of Electrical Engineering, 2023, 47(4): 1459-1472.
[7] BHURT F, ALI A, KEERIO M U, et al. Stochastic multi-objective optimal reactive power dispatch with the integration of wind and solar generation[J]. Energies, 2023, 16(13): 4896.
[8] 李嘉森, 王进, 杨蒙, 等. 基于随机优化的虚拟电厂热电联合经济优化调度[J]. 太阳能学报, 2023, 44(9): 57-65.
  LI Jiasen, WANG Jin, YANG Meng, et al. Combined heat and power economic optimal dispatching in virtual power plant based on stochastic optimization[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 57-65.
[9] ZHANG W G, HE X L. A new scenario reduction method based on higher-order moments[J]. INFORMS Journal on Computing, 2022, 34(4): 1903-1918.
[10] 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56(5): 193-202.
  ZHAO Yuanshang, LIN Weifang. Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson’s correlation coefficient[J]. Electric Power, 2023, 56(5): 193-202.
[11] KRISHNA A B, ABHYANKAR A R. Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method[J]. Energy, 2023, 265: 126173.
[12] 赵岳恒, 刘民伟, 王文飞, 等. 采用谱聚类的风电典型出力场景选取方法[J]. 云南电力技术, 2020, 48(1): 17-20.
  ZHAO Yueheng, LIU Minwei, WANG Wenfei, et al. Generation of typical wind power scenario based on spectral clustering method[J]. Yunnan Electric Power, 2020, 48(1): 17-20.
[13] LIU Y X, SIOSHANSI R, CONEJO A J. Hierarchical clustering to find representative operating periods for capacity-expansion modeling[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3029-3039.
[14] PINEDA S, MORALES J M. Chronological time-period clustering for optimal capacity expansion planning with storage[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7162-7170.
[15] 鲁思棋. 考虑场景聚类的分布式光伏布点规划研究[D]. 北京: 北京交通大学, 2018.
  LU Siqi. Location andsize planning of distributed photovoltaic generations considering scene clustering[D]. Beijing: Beijing Jiaotong University, 2018.
[16] GAO S P, HU B, XIE K G, et al. Spectral clustering based demand-oriented representative days selection method for power system expansion planning[J]. International Journal of Electrical Power & Energy Systems, 2021, 125: 106560.
[17] AN Y, ZENG B. Exploring the modeling capacity of two-stage robust optimization: Variants of robust unit commitment model[J]. IEEE Transactions on Power Systems, 2015, 30(1): 109-122.
[18] YANG X H, CHEN Z X, HUANG X, et al. Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort[J]. Energy, 2021, 221: 119727.
[19] AL-AWAMI A T, AMLEH N A, MUQBEL A M. Optimal demand response bidding and pricing mechanism with fuzzy optimization: Application for a virtual power plant[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 5051-5061.
[20] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2018, 33(5): 1076-1085.
  ZHAO Dongmei, YIN Jiafu. Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1076-1085.
[21] LI K, YANG F, WANG L P, et al. A scenario-based two-stage stochastic optimization approach for multi-energy microgrids[J]. Applied Energy, 2022, 322: 119388.
[22] GUO M H, WANG W, CHEN R H, et al. Research on bi-level model power dispatch considering the uncertainty of source and load[J]. Sustainable Energy Technologies & Assessments, 2022, 53: 102689.
[23] 潘昭旭, 刘三明, 王致杰, 等. 基于信息间隙决策理论的含风电电力系统调度[J]. 电力建设, 2018, 39(9): 87-94.
  PAN Zhaoxu, LIU Sanming, WANG Zhijie, et al. Dispatch based on information gap decision theory for power system with wind power[J]. Electric Power Construction, 2018, 39(9): 87-94.
[24] BEN-HAIM Y. Info-gap decision theory: Decisions under severe uncertainty[M]. San Diego, USA: Academic Press, 2001.
[25] CAO X Y, WANG J X, ZENG B. A chance constrained information-gap decision model for multi-period microgrid planning[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2684-2695.
[26] MAVALIZADEH H, AHMADI A, GANDOMAN F H, et al. Multiobjective robust power system expansion planning considering generation units retirement[J]. IEEE Systems Journal, 2018, 12(3): 2664-2675.
[27] 赵琛, 张少华. 基于信息间隙决策理论的发电商电量分配策略[J]. 控制与决策, 2017, 32(4): 751-754.
  ZHAO Chen, ZHANG Shaohua. Generation asset allocation strategies based on IGDT[J]. Control & Decision, 2017, 32(4): 751-754.
[28] ZARE K, MOGHADDAM M P, SHEIKH EL ESLAMI M K. Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology[J]. Energy, 2010, 35(7): 2999-3007.
[29] DOLATABADI A, JADIDBONAB M, MOHAMMADI-IVATLOO B. Short-term scheduling strategy for wind-based energy hub: A hybrid stochastic/IGDT approach[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 438-448.
[30] 汪超群, 韦化, 吴思缘. 基于信息间隙决策理论的多源联合优化机组组合[J]. 中国电机工程学报, 2018, 38(12): 3431-3440.
  WANG Chaoqun, WEI Hua, WU Siyuan. Multi-power combined unit commitment based on information gap decision theory[J]. Proceedings of the CSEE, 2018, 38(12): 3431-3440.
[31] 叶鹤林, 刘松, 胡剑, 等. 基于IGDT的含光热电站电力系统多源联合调度策略[J]. 电力系统保护与控制, 2021, 49(23): 35-43.
  YE Helin, LIU Song, HU Jian, et al. Multi-source joint dispatching strategy for a power system with concentrating solar power plants based on IGDT[J]. Power System Protection & Control, 2021, 49(23): 35-43.
[32] 颜宇飞, 唐早, 刘友波, 等. 双重不确定性下考虑风险偏好的风储系统日前报量策略[J]. 电网技术, 2023, 47(3): 1078-1087.
  YAN Yufei, TANG Zao, LIU Youbo, et al. Day-ahead bidding strategy of combined wind storage system considering risk preference under dual uncertainties[J]. Power System Technology, 2023, 47(3): 1078-1087.
[33] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1979, 1(2): 224-227.
[34] KIM M, RAMAKRISHNA R S. New indices for cluster validity assessment[J]. Pattern Recognition Letters, 2005, 26(15): 2353-2363.
Outlines

/