New Type Power System and the Integrated Energy

Quantization and Enhancement of System Frequency Nadir in Power Step Control

  • WU Shuangxi ,
  • LI Wenbo ,
  • QIN Yingjie ,
  • YAN Binjie ,
  • LI Jiapeng ,
  • LI Yujun
Expand
  • 1. Electric Power Dispatching and Control Center of Guangdong Power Grid Co., Ltd., Guangzhou 510060, China
    2. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Received date: 2023-08-02

  Accepted date: 2024-02-07

  Online published: 2024-03-15

Abstract

Converter interfaced power sources have the advantages of flexible and fast response, and the kinetic energy can be released to provide fast system frequency support. However, most of the existing control strategies neglect quantitative analysis of how control strategies affect the frequency nadir, and fail to effectively enhance the frequency nadir under different conditions. Aimed at improving the system frequency nadir, a frequency support strategy based on step power control is proposed. First, the system frequency response under step power control is analyzed, and analytical expressions for the two frequency nadirs following the disturbance are derived. Then, the optimal reference of power step control is determined by considering the kinetic energy which can be released by each wind turbine generator, and a coordinated distribution of the additional power is realized based on these expressions. Finally, a test system is implemented by using MATLAB/Simulink to verify the proposed strategy in numerical simulation.

Cite this article

WU Shuangxi , LI Wenbo , QIN Yingjie , YAN Binjie , LI Jiapeng , LI Yujun . Quantization and Enhancement of System Frequency Nadir in Power Step Control[J]. Journal of Shanghai Jiaotong University, 2025 , 59(6) : 857 -866 . DOI: 10.16183/j.cnki.jsjtu.2023.363

References

[1] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3770.
  CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770.
[2] 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138.
  FU Yang, DING Zhiyin, MI Yang. Frequency control strategy for interconnected power systems with time delay considering optimal energy storage regulation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138.
[3] 李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42(2): 84-93.
  LI Shichun, SONG Qiushuang, XUE Zhenyao, et al. Inertia estimation of new energy power system with virtual inertia response of wind power[J]. Electric Power Engineering Technology, 2023, 42(2): 84-93.
[4] 夏云峰. 2021年全球新增风电装机93.6 GW[J]. 风能, 2022(6): 38-43.
  XIA Yunfeng. In 2021, the installed capacity of new wind power in the world was 93.6 GW[J]. Wind Energy, 2022(6): 38-43.
[5] 李兴源, 曾琦, 王渝红, 等. 柔性直流输电系统控制研究综述[J]. 高电压技术, 2016, 42(10): 3025-3037.
  LI Xingyuan, ZENG Qi, WANG Yuhong, et al. Control strategies of voltage source converter based direct current transmission system[J]. High Voltage Engineering, 2016, 42(10): 3025-3037.
[6] 李兆伟, 吴雪莲, 庄侃沁, 等. “9·19” 锦苏直流双极闭锁事故华东电网频率特性分析及思考[J]. 电力系统自动化, 2017, 41(7): 149-155.
  LI Zhaowei, WU Xuelian, ZHUANG Kanqin, et al. Analysis and reflection on frequency characteristics of East China grid after bipolar locking of “9·19” Jinping-Sunan DC transmission line[J]. Automation of Electric Power Systems, 2017, 41(7): 149-155.
[7] VIDYANANDAN K V, SENROY N. Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transactions on Power Systems, 2013, 28(2): 837-846.
[8] LI Y J, XU Z, WONG K P. Advanced control strategies of PMSG-based wind turbines for system inertia support[J]. IEEE Transactions on Power Systems, 2017, 32(4): 3027-3037.
[9] 闫家铭, 毕天姝, 胥国毅, 等. 海上风电经VSC-HVDC并网改进频率控制策略[J]. 华北电力大学学报(自然科学版), 2021, 48(2): 11-19.
  YAN Jiaming, BI Tianshu, XU Guoyi, et al. An improved frequency control strategy for offshore wind farm connected by VSC-HVDC[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(2): 11-19.
[10] BAO W Y, WU Q W, DING L, et al. A hierarchical inertial control scheme for multiple wind farms with BESSs based on ADMM[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 751-760.
[11] 沈阳武, 宋兴荣, 罗紫韧, 等. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293.
  SHEN Yangwu, SONG Xingrong, LUO Ziren, et al. Inertial control strategy for wind farm with distributed energy storage system based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293.
[12] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232.
  ZHANG Guanfeng, YANG Junyou, SUN Feng, et al. Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232.
[13] 周涛, 黄菊, 韩汝帅, 等. 综合惯性控制下风力机惯性支撑能力分析及等效惯量评估[J]. 上海交通大学学报, 2024, 58(12): 1915-1924.
  ZHOU Tao, HUANG Ju, HAN Rushuai, et al. Inertial support capacity analysis and equivalent inertia estimation of wind turbines in integrated inertial control[J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1915-1924.
[14] ULLAH N R, THIRINGER T, KARLSSON D. Temporary primary frequency control support by variable speed wind turbines—Potential and applications[J]. IEEE Transactions on Power Systems, 2008, 23(2): 601-612.
[15] GARMROODI M, VERBI? G, HILL D J. Frequency support from wind turbine generators with a time-variable droop characteristic[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 676-684.
[16] KANG M, KIM K, MULJADI E, et al. Frequency control support of a doubly-fed induction generator based on the torque limit[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4575-4583.
[17] YANG D J, KIM J, KANG Y C, et al. Temporary frequency support of a DFIG for high wind power penetration[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3428-3437.
[18] KHESHTI M, LIN S Y, ZHAO X W, et al. Gaussian distribution-based inertial control of wind turbine generators for fast frequency response in low inertia systems[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1641-1653.
[19] 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43(5): 1672-1693.
  WANG Mengjun, GUO Jianbo, MA Shicong, et al. Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1672-1693.
[20] MILANO F. Rotor speed-free estimation of the frequency of the center of inertia[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1153-1155.
[21] SHAMS N, WALL P, TERZIJA V. Active power imbalance detection, size and location estimation using limited PMU measurements[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1362-1372.
[22] AZIZI S, SUN M Y, LIU G Y, et al. Local frequency-based estimation of the rate of change of frequency of the center of inertia[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4948-4951.
[23] 刘克天, 张钧, 李军, 等. 基于频率偏移面积的功率缺额计算及低频减载整定[J]. 电工技术学报, 2021, 36(5): 1040-1051.
  LIU Ketian, ZHANG Jun, LI Jun, et al. Power deficit calculation and under frequency load shedding strategy based on the frequency deviation area[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1040-1051.
[24] KHESHTI M, DING L, NAYERIPOUR M, et al. Active power support of wind turbines for grid frequency events using a reliable power reference scheme[J]. Renewable Energy, 2019, 139: 1241-1254.
[25] BAO W Y, DING L, LIU Z F, et al. Analytically derived fixed termination time for stepwise inertial control of wind turbines: Part I: Analytical derivation[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106120.
[26] GUO Y C, BAO W Y, DING L, et al. Analytically derived fixed termination time for stepwise inertial control of wind turbines: Part II: Application strategy[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106106.
[27] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720-729.
[28] 王一振, 邱逢良, 雷鸣, 等. 含大容量新能源接入的柔性直流背靠背分区互联系统频率支撑策略研究[J]. 电网技术, 2023, 47(3): 959-967.
  WANG Yizhen, QIU Fengliang, LEI Ming, et al. Frequency support strategy for VSC-BTB based DC segmented system with large capacity renewable energy integration[J]. Power System Technology, 2023, 47(3): 959-967.
[29] 王路平, 谢小荣, 刘颖, 等. 多直流馈入受端电网短期频率稳定性的实时协调控制方法[J]. 中国电机工程学报, 2018, 38(8): 2205-2212.
  WANG Luping, XIE Xiaorong, LIU Ying, et al. Real-time coordinated control of short-term frequency stability for the receiving-end systems with multi-infeed HVDC transmissions[J]. Proceedings of the CSEE, 2018, 38(8): 2205-2212.
Outlines

/