Journal of Shanghai Jiaotong University >
Mode Transition Control of Parallel Gas-Electric Hybrid Power System with Uncertain Delay
Received date: 2023-09-18
Revised date: 2023-11-20
Accepted date: 2024-01-05
Online published: 2024-02-05
Parallel gas-electric hybrid systems have broad application prospects in low-carbon ships due to their few emissions and dynamic performance. However, uncertain delays in multiple actuators during mode transition can cause violent fluctuations in the shaft speed along the power drive. In this paper, a cascaded internal mode control (IMC) consisting of filters with explicit nominal delay is proposed to improve speed tracking performance and eliminate the effect of delay. A dynamic model of the marine driveline is developed, and the cascade IMC is designed based on the driveline mechanism with the clutch serving as the separating component. The cascade IMC consists of an anti-saturation compensator, a two-stage tracking controller, and a two-stage anti-interference controller. Finally, the small-gain theorem is derived to ensure robust stability conditions, taking the upper bound of the uncertain delays into consideration. The results of simulation and dynamometer test show that the cascaded IMC has excellent robustness in handling uncertain delays, significantly reduces shaft jerk, and ensures smooth mode transition.
FU Shenglai , CHEN Li , CHEN Ziqiang . Mode Transition Control of Parallel Gas-Electric Hybrid Power System with Uncertain Delay[J]. Journal of Shanghai Jiaotong University, 2025 , 59(9) : 1225 -1236 . DOI: 10.16183/j.cnki.jsjtu.2023.473
| [1] | 范爱龙, 熊宇祺, 贺亚鹏, 等. 长江船舶替代燃料动力全生命周期碳足迹研究[J]. 船舶工程, 2022, 44(12): 70-75. |
| FAN Ailong, XIONG Yuqi, HE Yapeng, et al. Study on life-cycle carbon footprint of alternative fuel power for ships in the Yangtze River[J]. Journal of Ship Engineering, 2022, 44(12): 70-75. | |
| [2] | 宋恩哲, 蒋中州, 姚崇, 等. 船用柴油/天然气双燃料发动机模式切换控制策略研究[J]. 中国机械工程, 2022, 33(4): 388-396. |
| SONG Enzhe, JIANG Zhongzhou, YAO Chong, et al. Research on mode switching control strategy of marine diesel/natural gas dual-fuel engine[J]. China Mechanical Engineering, 2022, 33(4): 388-396. | |
| [3] | SUN X J, YAO C, SONG E Z, et al. Dynamic characteristics and energy efficiency enalysis of marine parallel gas-electric hybrid power system[J]. Propulsion Technology, 2022, 43(5): 379-390. |
| [4] | 李泽皓, 王甫, 胡卓, 等. 混合动力船舶能源配置与推进系统发展现状[J]. 大连海事大学学报, 2023, 49(3): 74-87. |
| LI Zehao, WANG Fu, HU Zhuo, et al. Development status of energy allocation and propulsion system for hybrid electric ships[J]. Journal of Dalian Maritime University, 2023, 49(3): 74-87. | |
| [5] | OKAMURA M, TAKAOKA T. The evolution of electric components in prius[J]. IEEJ Journal of Industry Applications, 2022, 11(1): 1-6. |
| [6] | 李豪迪, 赵治国, 唐鹏, 等. 基于负载补偿的功率分流混合动力系统模式切换性能测试方法[J]. 汽车工程, 2023, 45(10): 1908-1922. |
| LI Haodi, ZHAO Zhiguo, TANG Peng, et al. Test method for mode switching performance of power split hybrid power system based on load compensation[J]. Automotive Engineering, 2023, 45(10): 1908-1922. | |
| [7] | 金立源, 刘佳彬, 孟嗣斐, 等. 并联式船舶气电混合动力系统动态加速性能仿真[J]. 柴油机, 2022, 44(2): 36-43. |
| JIN Liyuan, LIU Jiabin, MENG Sifei, et al. Simulation of dynamic acceleration performance of parallel marine gas-electric hybrid power system[J]. Diesel Engine, 2022, 44(2): 36-43. | |
| [8] | 朱剑昀, 陈俐, 彭程. 混合动力船舶模式切换过程力矩协调控制[J]. 中国机械工程, 2017, 28(23): 2859-2867. |
| ZHU Jianyun, CHEN Li, PENG Cheng. Torque coordination control during mode switching of hybrid electric ship[J]. China Mechanical Engineering, 2017, 28(23): 2859-2867. | |
| [9] | 张益敏. 基于某内河公务船的柴电混合动力模式切换研究[D]. 上海: 上海交通大学, 2018. |
| ZHANG Yimin. Research on diesel-electric hybrid power mode switching based on a river official ship[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
| [10] | 苗东晓. 考虑执行延迟的船舶并联式混合动力系统模式切换控制[D] .上海: 上海交通大学, 2021. |
| MIAO Dongxiao. Mode transition control of marine parallel hybrid power system considering execution delay[D]. Shanghai: Shanghai Jiao Tong University, 2021. | |
| [11] | MIAO D, CHEN L, YI P. Internal model control during mode transition subject to time delay for hybrid electric vehicles[DB/OL]. (2020-04-14)[2023-09-10]. https://www.sae.org/publications/technical-papers/content/2020-01-0961/. |
| [12] | SALAVATI S, GRIGORIADIS K, FRANCHEK M. An explicit robust stability condition for uncertain time-varying first-order plus dead-time systems[J]. Isa Transactions, 2022, 126: 171-179. |
| [13] | 程小宣, 陈俐. 基于稳定性分析的电控离合器任务调度周期设计[J]. 上海交通大学学报, 2019, 53(4): 438-446. |
| CHENG Xiaoxuan, CHEN Li. Task scheduling cycle design of electronic control clutch based on stability analysis[J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 438-446. | |
| [14] | DU F, CAI Y, GUAN Z, et al. Optimization research on CAN bus transmission delay[J]. Automobile Technology, 2022(1): 35-40. |
| [15] | ZHOU H, FU J, ZENG Z, et al. Adaptive robust tracking control for underwater gliders with uncertainty and time-varying input delay[J]. Ocean Engineering, 2021, 240: 3-4. |
| [16] | 席龙飞, 张会生. 小功率内河船舶油电混合动力系统的建模及仿真研究[J]. 机电设备, 2014, 31(2): 23-27. |
| XI Longfei, ZHANG Huisheng. Simulation and analysis of a variable speed variable displacement vehicle[J]. Mechanical and Electrical Equipment, 2014, 31(2): 23-27. | |
| [17] | 宋恩哲, 孙晓军, 姚崇, 等. 船舶混合动力系统模式切换与动态协调控制[J]. 哈尔滨工程大学学报, 2022, 43(4): 522-528. |
| SONG Enzhe, SUN Xiaojun, YAO Chong, et al. Mode switching and dynamic coordination control of marine hybrid power system[J]. Journal of Harbin Engineering University, 2022, 43(4): 522-528. | |
| [18] | YANG C, JIAO X H, LI L, et al. A robust H-infinity control-based hierarchical mode transition control system for plug-in hybrid electric vehicle[J]. Mechanical Systems and Signal Processing, 2018, 99: 326-344. |
| [19] | YANG C, SHI Y, LI L, et al. Efficient mode transition control for parallel hybrid electric vehicle with adaptive dual-loop control framework[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1519-1532. |
| [20] | PENG C, CHEN L. Model reference adaptive control dased on adjustable reference model during mode transition for hybrid electric vehicles[J]. Mechatronics, 2022, 87: 92-97. |
| [21] | SU Y Z, HU M H, SU L, et al. Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle[J]. Mechanical Systems and Signal Processing, 2018, 107: 221-240. |
| [22] | 周嘉俊, 吴萌岭, 刘宇康, 等. 基于改进史密斯预估器的列车制动减速度控制研究[J]. 同济大学学报(自然科学版), 2020, 48(11): 1657-1667. |
| ZHOU Jiajun, WU Mengling, LIU Yukang, et al. Research on train braking deceleration control based on improved smith predictor[J]. Journal of Tongji University (Natural Science Edition), 2020, 48(11): 1657-1667. | |
| [23] | MANFREDMORARI, EVANGHELOSZAFIRIOU. Robust process control[M]. New Jersey, USA: Jeffrey C. Kantor, 1989. |
| [24] | LI Y L, YIN Y X, ZHANG D H. IMC-based design for teleoperation systems with time delays[J]. International Journal of Control Automation and Systems, 2018, 16(2): 887-895. |
| [25] | 杜文龙, 陈俐, 刘文通, 等. 考虑延迟的线控转向二自由度内模控制[J]. 中国机械工程, 2021, 32(16): 1904-1911. |
| DU Wenglong, CHEN Li, LIU Wentong, et al. Two-degree-of-freedom internal model control of steering-by-wire considering delay[J]. China Mechanical Engineering, 2021, 32(16): 1904-1911. | |
| [26] | 刘文通, 陈俐, 陈峻. 考虑延迟的汽车线控转向系统自适应内模控制[J]. 上海交通大学学报, 2021, 55(10): 1210-1218. |
| LIU Wentong, CHEN Li, CHEN Jun. Adaptive internal model control for automotive steer-by-wire system considering delay[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1210-1218. | |
| [27] | 周天豪, 杨智, 祝长生, 等. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报, 2020, 35(16): 3414-3425. |
| ZHOU Tianhao, YANG Zhi, ZHU Changsheng, et al. Internal modal-PID control of rotor system of high speed motor with electromagnetic bearing[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3414-3425. | |
| [28] | DING Z, CHEN L, MIAO D X. Decoupling internal model control for the robust engagement of clutches[J]. Mechatronics, 2021, 73: 102466. |
| [29] | OGATA K. Modern control engineering[M]. 5th ed. London,UK: Pearson, 2009. |
/
| 〈 |
|
〉 |