Naval Architecture, Ocean and Civil Engineering

Automatic Filling Optimization Design of Filler Bodies in Umbilical Cross-Section Based on Quasi-Physical Algorithm

  • YIN Xu ,
  • CAO Donghui ,
  • TIAN Geng ,
  • YANG Zhixun ,
  • FAN Zhirui ,
  • WANG Gang ,
  • LU Yucheng ,
  • WANG Hui
Expand
  • 1. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, Liaoning, China
    2. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
    3. School of Civil Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China

Received date: 2023-11-20

  Revised date: 2023-12-26

  Accepted date: 2024-01-12

  Online published: 2024-02-08

Abstract

As a key component in the subsea production system for oil and gas exploitation, a marine umbilical consists of optical cables, electrical cables, steel tubes, and filler bodies. The difference of materials and dimensions between the components leads to a great difference in their mechanical properties, and the different layouts cause a large gap in the performance of an umbilical. Considering the compactness, balance, and heat source dispersion of the cross-section, a multi-objective optimization model is established in this paper. Based on the quasi-physical algorithm, the layout design of cross-section of an umbilical containing equal-diameter components is conducted. Due to the mutual constraints between functional components, the optimized cross-section will have large gap. In order to meet the requirement of dense cross-sectional layout in the umbilical cable design specification, a strategy for automatically filling filler bodies based on image recognition is introduced, in combination with the layout optimization process. Finally, taking an umbilical as an example, the filling strategy is utilized to complete the design of cross-sectional filler bodies after obtaining the optimal layout through the quasi-physical algorithm. The algorithm is validated by comparison with the initial cross-sectional layout, demonstrating its effectiveness as a reference for the design of cross-sectional filler bodies of umbilicals.

Cite this article

YIN Xu , CAO Donghui , TIAN Geng , YANG Zhixun , FAN Zhirui , WANG Gang , LU Yucheng , WANG Hui . Automatic Filling Optimization Design of Filler Bodies in Umbilical Cross-Section Based on Quasi-Physical Algorithm[J]. Journal of Shanghai Jiaotong University, 2025 , 59(8) : 1103 -1113 . DOI: 10.16183/j.cnki.jsjtu.2023.588

References

[1] 郭宏, 屈衍, 李博, 等. 国内外脐带缆技术研究现状及在我国的应用展望[J]. 中国海上油气, 2012(1): 74-78.
  GUO Hong, QU Yan, LI Bo, et al. Research situation on domestic and abroad umbilical cord technology and prospect of application in China[J]. China Offshore Oil and Gas, 2012(1): 74-78.
[2] 马国君. 考虑温度场效应的脐带缆截面结构设计与优化[D]. 大连: 大连理工大学, 2015.
  MA Guojun. Design and optimization of umbilical cable cross-section structure considering temperature field effect[D]. Dalian: Dalian University of Technology, 2015.
[3] YANG Z, LU Q, YAN J, et al. Multidisciplinary optimization design for the section layout of umbilicals based on intelligent algorithm[J]. Journal of Offshore Mechanics & Arctic Engineering, 2018, 140(3): 031702.
[4] YANG Z, YIN X, YAN J, et al. Study on the optimization algorithm of the cross-sectional layout of an umbilical based on the layering strategy[J]. Ocean Engineering, 2021(232): 109120.
[5] 殷旭, 杨志勋, 王立夫, 等. 基于乘子罚函数算法的脐带缆截面布局多目标优化设计研究[J]. 中国造船, 2021, 62 (3): 114-126.
  YIN Xu, YANG Zhixun, WANG Lifu, et al. Research on multi-objective optimal design of umbilical cable cross-section layout based on multiplicative penalty function algorithm[J]. Ship Building of China, 2021, 62 (3): 114-126.
[6] YIN X, YANG Z, YAN J, et al. Study on the automatic optimization design of the cross-sectional layout of an umbilical with layers based on the GA-GLM[J]. Marine Structures, 2023(88): 103363.
[7] 杨志勋, 王刚, 阎军, 等. 填充对钢管脐带缆截面力学性能影响分析[J]. 计算机辅助工程, 2013, 22(2): 55-60.
  YANG Zhixun, WANG Gang, YAN Jun, et al. Analysis on effect of filling on mechanical property of steel tube umbilical cable section[J]. Integrated Computer-Aided Engineering, 2013, 22(2): 55-60.
[8] YE N Q, GJO?STEEN J K O, S?VIK S. On choice of finite element type for the filled bodies in umbilicals for deep water application[C]// Proceedings of ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China: British Computer Society, 2010: 679-685.
[9] 毛彦东, 杨志勋, 阎军, 等. 脐带缆截面填充构件拓扑优化轻量化设计[J]. 哈尔滨工程大学学报, 2022, 43(3): 421-428.
  MAO Yandong, YANG Zhixun, YAN Jun, et al. Topology optimization and lightweight design of filling bodies in the cross-section of umbilical cables[J]. Journal of Harbin Engineering University, 2022, 43(3): 421-428.
[10] 骆震江, 程川, 许如初, 等. 支持求解不等圆packing问题的降维策略[J]. 信息通信, 2020(9): 25-27.
  LUO Zhenjiang, CHENG Chuan, XU Ruchu, et al. Strategy for dimensionality reduction strategies for solving unequal circle packing problems[J]. Information and Communications, 2020(9): 25-27.
[11] 梁利东, 何东, 朱良恒. 不等圆Packing问题的多策略优化方法[J]. 机械科学与技术, 2022, 41(9): 1394-1402.
  LIANG Lidong, HE Dong, ZHU Liangheng. Multi-strategy optimization method forunequal circle packing problem[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1394-1402.
[12] 武蓓蓓, 徐青, 冯世盛. 基于MATLAB的地图符号识别算法研究[J]. 测绘与空间地理信息, 2022, 45(7): 249-252.
  WU Beibei, XU Qing, FENG Shisheng. Research on map symbol recognition algorithm based on MATLAB[J]. Geomatics & Spatial Information Technology, 2022, 45(7): 249-252.
[13] 高新洲, 郭延宁, 马广富, 等. 采用混合遗传算法的敏捷卫星自主观测任务规划[J]. 哈尔滨工业大学学报, 2021, 53 (12): 1-9.
  GAO Xinzhou, GUO Yanning, MA Fuguang, et al. Agile satellite autonomous observation mission planning using hybrid genetic algorithm[J]. Journal of Harbin Institute of Technology, 2021, 53 (12): 1-9.
[14] 郑梅生, 陈宁, 宋超. 计算任意多边形最大内圆的一种算法[J]. 机械设计与制造, 2003(5): 84-85.
  ZHENG Meisheng, CHEN Ning, SONG Chao. An algorithm for determining the largest internal circle in arbitrary polygons[J]. Machinery Design & Manufacture, 2003(5): 84-85.
[15] 孙玉芹, 车仁生. 求解最大内切圆的一种新方法[J]. 光学精密工程, 2003, 11(2): 181-187.
  SUN Yuqin, CHE Rensheng. Novel method for solving maximum inscribed circle[J]. Optics and Precision Engineering, 2003, 11(2): 181-187.
[16] 李伟, 周朝晖, 严承华. 图像最大内切圆求解算法的研究[J]. 工程图学学报, 2006, 27(2): 117-121.
  LI Wei, ZHOU Zhaohui, YAN Chenghua. Research on algorithm for solving maximum inscribed circle of image[J]. Journal of Engineering Graphics, 2006, 27(2): 117-121.
[17] LUKASSEN T V, GUNNARSSON E, KRENK S, et al. Tension-bending analysis of flexible pipe by a repeated unit cell finite element model[J]. Marine Structures, 2019, 64: 401-420.
[18] 刘庆升, 薛鸿祥, 袁昱超, 等. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56 (9): 1247-1255.
  LIU Qingsheng, XUE Hongxiang, YUAN Yuchao, et al. Bending properties of unbonded flexible risers with composite materials[J]. Journal of Shanghai Jiao Tong University, 2022, 56 (9): 1247-1255.
Outlines

/