Journal of Shanghai Jiaotong University >
Source-Load Matching Analysis and Optimal Planning of Wind-Solar-Thermal Coupled System Considering Renewable Energy Ramps
Received date: 2022-07-05
Revised date: 2022-09-09
Accepted date: 2022-12-13
Online published: 2024-01-16
Wind, photovoltaic, and thermal power generation can form a coupled system through the same grid-connected point, which is a high coordination and low-carbon approach of renewable energy and flexible regulating power source at generation side in northern China. By considering renewable energy ramps and source-load matching analysis, this paper studies the optimal capacity planning of a wind-solar-thermal coupled system to provide reference for coupled system planning. First, the operation model and the uncertainty method of coupled system are briefly described. Then, considering the wind-solar complementary, ramp events, and critical load characteristics, relevant indices are selected and proposed for source-load matching evaluation. After that, considering the constraints of source-load characteristics, matching, and cost, an optimal capacity planning model of wind-solar-thermal coupled system is established. Finally, based on the actual data in Liaoning Province, a case study is conducted to acquire the optimal capacity of the wind and solar generation in the area, and the interaction between the source-load relevant indices and the planning results is analyzed, which provides reference and suggestion for the optimal capacity planning of renewable energy generation.
XIA Qinqin, LUO Yongjie, WANG Rongmao, ZOU Yao, LUO Huanhuan, LI Jincan, ZHOU Niancheng, WANG Qianggang . Source-Load Matching Analysis and Optimal Planning of Wind-Solar-Thermal Coupled System Considering Renewable Energy Ramps[J]. Journal of Shanghai Jiaotong University, 2024 , 58(1) : 69 -81 . DOI: 10.16183/j.cnki.jsjtu.2022.260
[1] | 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. (2021-10-24)[2022-06-10]. http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. |
[1] | State Council. State Council about printed and distributed notice of action plan for carbon peak before 2030[EB/OL]. (2021-10-24)[2022-06-10]. http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. |
[2] | 中共中央, 国务院. 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021-09-22)[2022-06-10]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. |
[2] | CPC Central Committee, State Council. CPC Central Committee, State Council about opinion of fully and accurately implementing the new development philosophy, and ensuring the success of the carbon peak and carbon neutrality goals[EB/OL]. (2021-09-22)[2022-06-10]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. |
[3] | 国家能源局. 关于公开征求对《国家发展改革委国家能源局关于开展“风光水火储一体化”“源网荷储一体化”的指导意见(征求意见稿)》意见的公告[EB/OL].(2020-08-27)[2022-06-10]. http://www.nea.gov.cn/2020-08/27/c_139321964.htm. |
[3] | National Energy Administration. Announcement on soliciting public comments on the guiding opinions (draft for comments) of the National Development and Reform Commission and the National Energy Administration on the integrated development of wind, solar, hydro, and energy storage, and the integrated development of generation, grid, load, and energy storage[EB/OL].(2020-08-27)[2022-06-10]. http://www.nea.gov.cn/2020-08/27/c_139321964.htm. |
[4] | 谢鹏, 蔡泽祥, 刘平, 等. 考虑多时间尺度不确定性耦合影响的风光储微电网系统储能容量协同优化[J]. 中国电机工程学报, 2019, 39(24): 7126-7136. |
[4] | XIE Peng, CAI Zexiang, LIU Ping, et al. Cooperative optimization of energy storage capacity for renewable and storage involved microgrids considering multi time scale uncertainty coupling influence[J]. Proceedings of the CSEE, 2019, 39(24): 7126-7136. |
[5] | 亢丽君, 王蓓蓓, 薛必克, 等. 计及爬坡场景覆盖的高比例新能源电网平衡策略研究[J]. 电工技术学报, 2022, 37(13): 3275-3288. |
[5] | KANG Lijun, WANG Beibei, XUE Bike, et al. Research on the balance strategy for power grid with high proportion renewable energy considering the ramping scenario coverage[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3275-3288. |
[6] | 张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42(6): 1783-1792. |
[6] | ZHANG Dongying, DAI Yue, ZHANG Xu, et al. Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42(6): 1783-1792. |
[7] | 朱文立, 张利, 杨明, 等. 考虑日周期性影响的光伏功率爬坡事件非精确概率预测[J]. 电力系统自动化, 2019, 43(20): 31-38. |
[7] | ZHU Wenli, ZHANG Li, YANG Ming, et al. Imprecise probabilistic prediction of photovoltaic power ramp event considering daily periodic effect[J]. Automation of Electric Power Systems, 2019, 43(20): 31-38. |
[8] | 万家豪, 苏浩, 冯冬涵, 等. 计及源荷匹配的风光互补特性分析与评价[J]. 电网技术, 2020, 44(9): 3219-3226. |
[8] | WAN Jiahao, SU Hao, FENG Donghan, et al. Analysis and evaluation of the complementarity characteristics of wind and photovoltaic considering source-load matching[J]. Power System Technology, 2020, 44(9): 3219-3226. |
[9] | 李晖, 高涵宇, 张艳, 等. 考虑相关性的大规模风光互补电网扩展规划[J]. 电网技术, 2018, 42(7): 2120-2127. |
[9] | LI Hui, GAO Hanyu, ZHANG Yan, et al. Expansion planning of large-scale hybrid wind-photovoltaic transmission network considering correlation[J]. Power System Technology, 2018, 42(7): 2120-2127. |
[10] | XU L, RUAN X B, MAO C X, et al. An improved optimal sizing method for wind-solar-battery hybrid power system[J]. IEEE Transactions on Sustainable Energy, 2013, 4(3): 774-785. |
[11] | MA H Y, YAN Z, LI M J, et al. Benefit evaluation of the deep peak-regulation market in the northeast China grid[J]. CSEE Journal of Power & Energy Systems, 2019, 5(4): 533-544. |
[12] | WANG Y C, LOU S H, WU Y W, et al. Flexible operation of retrofitted coal-fired power plants to reduce wind curtailment considering thermal energy storage[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1178-1187. |
[13] | 邓婷婷, 娄素华, 田旭, 等. 计及需求响应与火电深度调峰的含风电系统优化调度[J]. 电力系统自动化, 2019, 43(15): 34-41. |
[13] | DENG Tingting, LOU Suhua, TIAN Xu, et al. Optimal dispatch of power system integrated with wind power considering demand response and deep peak regulation of thermal power units[J]. Automation of Electric Power Systems, 2019, 43(15): 34-41. |
[14] | 国家能源局东北监管局. 东北电力辅助服务市场运营规则(暂行)[R]. 沈阳: 国家能源局东北监管局, 2020. |
[14] | Northeast Regulatory Agency of National Energy Administration. Operation rules of auxiliary service market of Northeast China (Trial)[R]. Shenyang: Northeast Regulatory Agency of National Energy Administration, 2020. |
[15] | 程光, 徐飞, 胡博, 等. 可再生能源与火电集成耦合的协同性能及组合设计研究[J]. 电网技术, 2021, 45(6): 2178-2191. |
[15] | CHENG Guang, XU Fei, HU Bo, et al. Synergistic performance and combination design of coupling of renewable energy and thermal power[J]. Power System Technology, 2021, 45(6): 2178-2191. |
[16] | 杨龙杰, 周念成, 胡博, 等. 计及火电阶梯式爬坡率的耦合系统优化调度方法[J]. 中国电机工程学报, 2022, 42(1): 153-164. |
[16] | YANG Longjie, ZHOU Niancheng, HU Bo, et al. Optimal scheduling method for coupled system based on ladder-type ramp rate of thermal power units[J]. Proceedings of the CSEE, 2022, 42(1): 153-164. |
[17] | 权超, 董晓峰, 姜彤. 基于CCHP耦合的电力、天然气区域综合能源系统优化规划[J]. 电网技术, 2018, 42(8): 2456-2466. |
[17] | QUAN Chao, DONG Xiaofeng, JIANG Tong. Optimization planning of integrated electricity-gas community energy system based on coupled CCHP[J]. Power System Technology, 2018, 42(8): 2456-2466. |
[18] | 包铭磊, 丁一, 桑茂盛, 等. 计及多目标协调的电-气耦合系统源端容量规划研究[J]. 中国电机工程学报, 2021, 41(22): 7551-7563. |
[18] | BAO Minglei, DING Yi, SANG Maosheng, et al. Research on energy capacity planning of electricity-gas systems considering multi-objective coordination[J]. Proceedings of the CSEE, 2021, 41(22): 7551-7563. |
[19] | 刘新苗, 卢洵, 娄源媛, 等. 基于时序运行模拟的风火打捆最优容量配比整定[J]. 电力系统保护与控制, 2021, 49(21): 53-62. |
[19] | LIU Xinmiao, LU Xun, LOU Yuanyuan, et al. Optimal setting of wind-thermal-bundled capacity ratio based on chronological operation simulation[J]. Power System Protection & Control, 2021, 49(21): 53-62. |
[20] | 张恒, 袁铁江, 车勇, 等. 兼顾新能源穿透功率和风险的风光火打捆外送电源规划[J]. 电力系统自动化, 2018, 42(19): 71-76. |
[20] | ZHANG Heng, YUAN Tiejiang, CHE Yong, et al. Power supply planning for wind-photovoltaic-thermal bundled transmission considering both power penetration and risk of new energy[J]. Automation of Electric Power Systems, 2018, 42(19): 71-76. |
[21] | LI Y, ZOU Y, TAN Y, et al. Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 273-283. |
[22] | QIAO X B, ZOU Y, LI Y, et al. Impact of uncertainty and correlation on operation of micro-integrated energy system[J]. International Journal of Electrical Power & Energy Systems, 2019, 112: 262-271. |
[23] | GAMS. Scenred[EB/OL]. (2022-06-01)[2022-06-10]. https://www.gams.com/latest/docs/T_SCENRED.html. |
[24] | SEVLIAN R, RAJAGOPAL R. Detection and statistics of wind power ramps[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3610-3620. |
[25] | 刘思, 李林芝, 吴浩, 等. 基于特性指标降维的日负荷曲线聚类分析[J]. 电网技术, 2016, 40(3): 797-803. |
[25] | LIU Si, LI Linzhi, WU Hao, et al. Cluster analysis of daily load curves using load pattern indexes to reduce dimensions[J]. Power System Technology, 2016, 40(3): 797-803. |
[26] | 张歆蒴, 陈仕军, 曾宏, 等. 基于源荷匹配的异质能源互补发电调度[J]. 电网技术, 2020, 44(9): 3314-3320. |
[26] | ZHANG Xinshuo, CHEN Shijun, ZENG Hong, et al. Heterogeneous energy complementary power generation dispatching based on output-load matching[J]. Power System Technology, 2020, 44(9): 3314-3320. |
[27] | 宋军英, 崔益伟, 李欣然, 等. 基于欧氏动态时间弯曲距离与熵权法的负荷曲线聚类方法[J]. 电力系统自动化, 2020, 44(15): 87-94. |
[27] | SONG Junying, CUI Yiwei, LI Xinran, et al. Load curve clustering method based on euclidean dynamic time warping distance and entropy weight[J]. Automation of Electric Power Systems, 2020, 44(15): 87-94. |
[28] | YANG L J, ZHOU N C, ZHOU G P, et al. Day-ahead optimal dispatch model for coupled system considering ladder-type ramping rate and flexible spinning reserve of thermal power units[J]. Journal of Modern Power Systems & Clean Energy, 2022, 10(6): 1482-1493. |
[29] | 马英浩, 谢开贵, 杨贺钧, 等. 基于LCC的风火电打捆发电系统多阶段优化规划模型[J]. 电力系统自动化, 2017, 41(21): 70-78. |
[29] | MA Yinghao, XIE Kaigui, YANG Hejun, et al. LCC based multi-period optimal planning model of bundled wind-thermal generation system[J]. Automation of Electric Power Systems, 2017, 41(21): 70-78. |
[30] | BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge, UK: Cambridge, 2004. |
[31] | Gurobi. Gurobi-The fastest solver-Gurobi[EB/OL]. (2022-06-01)[2022-07-28]. https://www.gurobi.com/. |
/
〈 |
|
〉 |