Journal of Shanghai Jiaotong University >
Layout Optimization Design of Human Machine Interface in Wheelhouse Based on Ergonomics
Received date: 2022-10-14
Revised date: 2022-12-13
Accepted date: 2023-03-10
Online published: 2024-01-08
To solve the problems of empiricism, subjectivity and randomness in the manual layout of human machine interface in wheelhouse, an optimization layout design method of human machine interface that combines virtual simulation and optimization algorithm is proposed. First, the optimal operating point and the operating comfort of each area of the human machine interface are obtained through virtual simulation. Then, the layout criteria and ergonomics criteria of human machine interface are quantified as objective functions and constraints, a layout optimization mathematical model of human machine interface is established, and a large number of initial positions of the particles in the particle swarm optimization (PSO) algorithm are obtained through the differential evolution algorithm. Finally, the optimal layout scheme is obtained, and virtual simulation evaluation is conducted. Taking a control panel as an example for layout optimization and virtual simulation, the optimal layout scheme obtained is proved to satisfy ergonomic criteria, and the performance of the human machine interface has been improved. This paper can provide references for the layout design of the high performance human machine interface in wheelhouse.
JI Yuheng, LI Chuntong, LUO Xiaomeng, YANG Xuelian, WANG Deyu . Layout Optimization Design of Human Machine Interface in Wheelhouse Based on Ergonomics[J]. Journal of Shanghai Jiaotong University, 2024 , 58(2) : 201 -210 . DOI: 10.16183/j.cnki.jsjtu.2022.401
[1] | HOLLIFIELD B, OLIVER D, NIMMO L, et al. The high performance HMI handbook[M]. Kalamazoo, USA: 360 Digital Books, 2008: 22-24. |
[2] | BONNEY M C, WILLIAMS R W. CAPABLE A Computer program to layout controls and panels[J]. Ergonomics, 1977, 20(3): 297-316. |
[3] | 龙升照. 人-机-环境系统工程理论及其在生产力发展中的意义[C]// 第一届全国人-机-环境系统工程学术会议论文集. 北京: 中国系统工程学会, 1993: 12-22. |
LONG Shenzhao. Human-machine-environment system engineering theory and its significance in productivity development[C]// Proceedings of the First National Conference on Human-Machine-Environment Systems Engineering. Beijing, China: Systems Engineering Society of China, 1993: 12-22. | |
[4] | 王帅旗. 船舶驾驶室布置人机工程设计及其应用[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
WANG Shuaiqi. Ergonomic design and application of ship wheelhouse layout[D]. Harbin: Harbin Engineering University, 2012. | |
[5] | 马雨薇. 基于人因工程学的训练舰舰桥布局优化设计与分析[J]. 工业设计, 2018(2): 118-121. |
MA Yuwei. An ergonomic approach for optimized layout of training ship’s bridge[J]. Industrial Design, 2018(2): 118-121. | |
[6] | 陈登凯, 范昱, 张帅, 等. 舱内功能及人机工效导向的载人潜水器工作舱布局设计方法[J]. 中国舰船研究, 2018, 13(2): 41-50. |
CHEN Dengkai, FAN Yu, ZHANG Shuai, et al. Manned submersible working cabin layout design method under cabin function system constraints and ergonomic constraints[J]. Chinese Journal of Ship Research, 2018, 13(2): 41-50. | |
[7] | HARTMAN A, NANDIKOLLA V K. Human-machine interface for a smart wheelchair[J]. Journal of Robotics, 2019, 41(2): 59-69. |
[8] | DENG L, WANG G H, YU S H. Layout design of human-machine interaction interface of cabin based on cognitive ergonomics and GA-ACA[J]. Computational Intelligence and Neuroscience, 2016, 10(12): 22-33. |
[9] | DENG L, WANG G H. Quantitative evaluation of visual aesthetics of human-machine interaction interface layout[J]. Computational Intelligence and Neuroscience, 2020, 14(3): 41-54. |
[10] | LU J, MA J, GONG Z Y. Design of human-machine interaction interface for autonomous vehicles based on multidimensional perceptual context[J]. Scientific Programming, 2021, 30(11): 18-25. |
[11] | HAO L, CHUNG W J. Human-machine interface visual communication design model of electronic equipment using machine vision technology[J]. Wireless Communications and Mobile Computing, 2022, 22(3): 108-116. |
[12] | 张玉梅. 舰船人-机-环系统工程研究综述[J]. 中国舰船研究, 2017, 12(2): 41-48. |
ZHANG Yumei. A review of warship man-machine-environment system engineering[J]. Chinese Journal of Ship Research, 2017, 12(2): 41-48. | |
[13] | 邓丽. 舱室人机界面布局设计与评估优化方法研究[D]. 陕西: 西北工业大学, 2016. |
DENG Li. Research on layout design and evaluation optimization of human-machine interface for cabin[D]. Shaanxi: Northwestern Polytechnical University, 2016. | |
[14] | 王运龙, 姜云博, 管官, 等. 基于知识工程的船舶机舱设备三维布局设计[J]. 上海交通大学学报, 2021, 55(10): 1219-1227. |
WANG Yunlong, JIANG Yunbo, GUAN Guan, et al. Design of three-dimensional layout of ship engine room equipment based on knowledge based engineering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1219-1227. | |
[15] | HAN Z T, GU Z Q, MA X K, et al. Multimaterial layout optimization of truss structures via an improved particle swarm optimization algorithm[J]. Computers and Structures, 2019, 222(6): 10-24. |
[16] | IACS. Recommendation for the application of SOLAS regulation V/15:IACS Rec.95[S]. London, UK: International Association of Classification Societies, 2011. |
[17] | 国家技术监督局. 操纵器一般人类工效学要求: GB/T 14775—1993[S]. 北京: 中国标准出版社, 1993. |
State Bureau of Technical Supervision. General ergonomics requirements for controller: GB/T 14775—1993[S]. Beijing: Standards Press of China, 1993. | |
[18] | 钮建伟, 刘静, 冉令华. DELMIA人机工程从入门到精通[M]. 北京: 电子工业出版社, 2018: 44. |
NIU Jianwei, LIU Jing, RAN Linghua. DELMIA ergonomics from entry to mastery[M]. Beijing: Publishing House of Electronics Industry, 2018: 44. | |
[19] | International Maritime Organization. Guidelines on ergonomic criteria for bridge equipment and layout:MSC/Circ.982[S]. London, UK: The Maritime Safety Committee, 2000. |
[20] | 丘文桢, 宋兴宇, 张新曙. 基于代理模型的三立柱半潜平台多目标优化[J]. 上海交通大学学报, 2021, 55(1): 11-20. |
QIU Wenzhen, SONG Xingyu, ZHANG Xinshu. Multi-objective optimization of three-column semi-submersible platforms based on surrogate models[J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 11-20. | |
[21] | 郭源源, 王谦, 梁峰. 基于粒子群优化算法的车间布局设计[J]. 计算机集成制造系统, 2012, 18(11): 2476-2484. |
GUO Yuanyuan, WANG Qian, LIANG Feng. Facility layout design based on particle swarm optimization[J]. Computer Integrated Manufacturing Systems, 2012, 18(11): 2476-2484. | |
[22] | HE Z C, NING D Z, GOU Y, et al. Wave energy converter optimization based on differential evolution algorithm[J]. Energy, 2022, 246(4): 1-11. |
[23] | 徐泽宇, 蒋南云. 基于改进粒子群算法的凹多边形食堂布局优化[J]. 物流技术, 2021, 40(12): 59-64. |
XU Zeyu, JIANG Nanyun. Layout optimization of concave polygon canteen based on improved particle swarm optimization algorithm[J]. Logistics Technology, 2021, 40(12): 59-64. | |
[24] | 国家技术监督局. 军事装备和设施的人机工程设计手册: GJB/Z 131—2002[S]. 北京: 中国标准出版社, 2002. |
State Bureau of Technical Supervision. Human engineering design handbook for military equipment and facilities: GJB/Z 131—2002[S]. Beijing: Standards Press of China, 2002. | |
[25] | 秦沛阳. 基于CATIA的舰载显控台人机工程研究[J]. 机械设计, 2017, 34(10): 105-109. |
QIN Peiyang. Ergonomics research of shipborne console based on CATIA[J]. Journal of Machine Design, 2017, 34(10): 105-109. | |
[26] | 周茂, 刘明明, 刘全东, 等. 核电厂主控制室人因分析中的人体尺寸修正[J]. 上海交通大学学报, 2019, 53(1): 17-23. |
ZHOU Mao, LIU Mingming, LIU Quandong, et al. Modification of human body size in human factor analysis of main control room of nuclear power plant[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 17-23. | |
[27] | 国家技术监督局. 军事装备和设施的人机工程设计准则: GJB 2873—1997[S]. 北京: 中国标准出版社, 1997. |
State Bureau of Technical Supervision. Human engineering design criteria for military equipment and facilities: GJB 2873—1997[S]. Beijing: Standards Press of China, 1997. | |
[28] | 国家技术监督局. 坐姿人体模板功能设计要求: GB/T 14779—1993[S]. 北京: 中国标准出版社, 1993. |
State Bureau of Technical Supervision. The design requirement for human body template sitting: GB/T 14779—1993[S]. Beijing: Standards Press of China, 1993. | |
[29] | 孙守迁, 唐明, 潘云鹤. 面向人机工程的布局设计方法的研究[J]. 计算机辅助设计与图形学学报, 2000(11): 870-872. |
SUN Shouqian, TANG Ming, PAN Yunhe. Research on ergonomics based layout design[J]. Journal of Computer-Aided Design and Computer Graphics, 2000(11): 870-872. |
/
〈 |
|
〉 |