Journal of Shanghai Jiaotong University >
Junction Temperature Algorithm of IGBT for Interface Converter in Optical Storage Microgrid System Considering Three-Dimensional Transverse Heat Conduction
Received date: 2023-11-14
Revised date: 2023-12-23
Accepted date: 2023-12-29
Online published: 2024-01-10
It is difficult for the existing junction temperature algorithms of insulated gate bipolar transistor (IGBT) to evaluate the impact on the thermal diffusion angle of the IGBT module under varying output power and heat dissipation conditions of optical storage unit interface converters in optical storage microgrids, which results in limited accuracy of junction temperature algorithm and poses a huge challenge to system thermal management. To address the above issues, a junction temperature algorithm of IGBT in interface converters in optical storage microgrid systems is proposed considering three-dimensional transverse heat conduction (3-D THC). First, a physical thermal model of power devices is established considering the thermal coupling between multiple chips in the optical storage microgrid system. Then, a junction temperature algorithm considering 3-D THC is further proposed based on the established physical model, and a thermal network model considering 3-D THC is established, which effectively improves the calculation accuracy of current state thermal parameters and power module thermal diffusion angle. Finally, the accuracy of the proposed model is verified using finite element analysis in the PinFin heat sink structure. The simulation results show that compared with various junction temperature algorithms, the proposed algorithm has the smallest error in junction temperature calculation under steady-state and sudden power change conditions, with approximately 3.11% and 3.65% respectively, which increases accuracy by 11.53% and 61.93% respectively compared with the algorithm not considering thermal diffusion angle (α=0). The proposed algorithm also has the highest junction temperature accuracy and the smallest error under different heat dissipation conditions.
XU Yang , XIAO Qian , JIA Hongjie , JIN Yu , MU Yunfei , LU Wenbiao . Junction Temperature Algorithm of IGBT for Interface Converter in Optical Storage Microgrid System Considering Three-Dimensional Transverse Heat Conduction[J]. Journal of Shanghai Jiaotong University, 2025 , 59(10) : 1533 -1545 . DOI: 10.16183/j.cnki.jsjtu.2023.577
| [1] | 盛戈皞, 钱勇, 罗林根, 等. 面向新型电力系统的电力设备运行维护关键技术及其应用展望[J]. 高电压技术, 2021, 47(9): 3072-3084. |
| SHENG Gehao, QIAN Yong, LUO Lingen, et al. Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J]. High Voltage Engineering, 2021, 47(9): 3072-3084. | |
| [2] | 余威, 杨欢红, 焦伟, 等. 基于优劣解距离算法的光储配电网自适应虚拟惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1317-1324. |
| YU Wei, YANG Huanhong, JIAO Wei, et al. Adaptive virtual inertial control strategy of optical storage and distribution network based on TOPSIS algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1317-1324. | |
| [3] | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18. |
| LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18. | |
| [4] | 钟智伟, 王誉翔, 黄亦翔, 等. 基于概率稀疏自注意力的IGBT模块剩余寿命跨工况预测[J]. 上海交通大学学报, 2023, 57(8): 1005-1015. |
| ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, et al. Remaining useful life prediction of IGBT modules across working conditions based on ProbSparse self-attention[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015. | |
| [5] | GRECO G, VINCI G, BAZZANO G, et al. Layered electro-thermal model of high-end integrated power electronics modules with IGBTs[C]// IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, USA: IEEE, 2014: 1575-1580. |
| [6] | REICHL J, ORTIZ-RODRíGUEZ J M, HEFNER A, et al. 3-D thermal component model for electrothermal analysis of multichip power modules with experimental validation[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 3300-3308. |
| [7] | BRUCKNER T, BERNET S. Estimation and measurement of junction temperatures in a three-level voltage source converter[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 3-12. |
| [8] | YIN S, WANG T, TSENG K J, et al. Electro-thermal modeling of SiC power devices for circuit simulation[C]// IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. Vienna, Austria: IEEE, 2013: 718-723. |
| [9] | ALAVI O, ABDOLLAH M, HOOSHMAND VIKI A. Assessment of thermal network models for estimating IGBT junction temperature of a buck converter[C]// 2017 8th Power Electronics, Drive Systems & Technologies Conference. Mashhad, Iran: IEEE, 2017: 102-107. |
| [10] | 陈杰, 邓二平, 赵雨山, 等. 高压大功率器件结温在线测量方法综述[J]. 中国电机工程学报, 2019, 39(22): 6677-6688. |
| CHEN Jie, DENG Erping, ZHAO Yushan, et al. Review of on-line junction temperature measurement methods of high voltage power electronics[J]. Proceedings of the CSEE, 2019, 39(22): 6677-6688. | |
| [11] | LI J F, CASTELLAZZI A, ELEFFENDI M A, et al. A physical RC network model for electrothermal analysis of a multichip SiC power module[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2494-2508. |
| [12] | 杜雄, 李腾飞, 夏俊, 等. 基于零输入响应的Cauer型RC网络参数辨识方法[J]. 电工技术学报, 2017, 32(1): 222-230. |
| DU Xiong, LI Tengfei, XIA Jun, et al. Identification method for cauer type RC network parameter based on the zero-input response[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 222-230. | |
| [13] | WANG Z, QIAO W. A physics-based improved cauer-type thermal equivalent circuit for IGBT modules[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 6781-6786. |
| [14] | 魏云海, 陈民铀, 赖伟, 等. 基于IGBT结温波动平滑控制的主动热管理方法综述[J]. 电工技术学报, 2022, 37(6): 1415-1430. |
| WEI Yunhai, CHEN Minyou, LAI Wei, et al. Review on active thermal control methods based on junction temperature swing smooth control of IGBTs[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1415-1430. | |
| [15] | 王海田, 汤广福, 贺之渊, 等. 模块化多电平换流器的损耗计算[J]. 电力系统自动化, 2015, 39(2): 112-118. |
| WANG Haitian, TANG Guangfu, HE Zhiyuan, et al. Power losses calculation of modular multilevel converter[J]. Automation of Electric Power Systems, 2015, 39(2): 112-118. | |
| [16] | AKBARI M, TAVAKOLI BINA M, BAHMAN A S, et al. An extended multilayer thermal model for multichip IGBT modules considering thermal aging[J]. IEEE Access, 2021, 9: 84217-84230. |
| [17] | 马铭遥, 郭伟生, 严雪松, 等. 用于电动汽车功率模块热分析的紧凑型热网络模型[J]. 中国电机工程学报, 2020, 40(18): 5796-5805. |
| MA Mingyao, GUO Weisheng, YAN Xuesong, et al. Compact thermal network model for thermal analysis of power modules in electric vehicle[J]. Proceedings of the CSEE, 2020, 40(18): 5796-5805. | |
| [18] | 唐云宇, 林燎源, 马皓. 一种改进的并联IGBT模块瞬态电热模型[J]. 电工技术学报, 2017, 32(12): 88-96. |
| TANG Yunyu, LIN Liaoyuan, MA Hao. An improved transient electro-thermal model for paralleled IGBT modules[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 88-96. | |
| [19] | 范迦羽, 郑飞麟, 王耀华, 等. 计及热阻与发射极电感匹配的并联IGBT芯片稳态结温均衡方法[J]. 电工技术学报, 2022, 37(12): 3028-3037. |
| FAN Jiayu, ZHENG Feilin, WANG Yaohua, et al. Steady temperature equalization method for the parallel IGBTs considering the thermal resistance and the matching emitter parasitic inductance[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3028-3037. | |
| [20] | 王希平, 李志刚, 姚芳. 模块化多电平换流阀IGBT器件功率损耗计算与结温探测[J]. 电工技术学报, 2019, 34(8): 1636-1646. |
| WANG Xiping, LI Zhigang, YAO Fang. Power loss calculation and junction temperature detection of IGBT devices for modular multilevel valve[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1636-1646. | |
| [21] | 赵红璐, 朱永元, 张银. 大功率逆变器散热设计[J]. 电气技术, 2018, 19(8): 149-156. |
| ZHAO Honglu, ZHU Yongyuan, ZHANG Yin. Thermal design of high-power inverter[J]. Electrical Engineering, 2018, 19(8): 149-156. | |
| [22] | 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. |
| YAO Fang, HU Yang, LI Zheng, et al. Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. | |
| [23] | 魏克新, 杜明星. 基于集总参数法的IGBT模块温度预测模型[J]. 电工技术学报, 2011, 26(12): 79-84. |
| WEI Kexin, DU Mingxing. Temperature prediction model of IGBT modules based on lumped parameters method[J]. Transactions of China Electrotechnical Society, 2011, 26(12): 79-84. | |
| [24] | BAHMAN A S, MA K, GHIMIRE P, et al. A 3-D-lumped thermal network model for long-term load profiles analysis in high-power IGBT modules[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 1050-1063. |
| [25] | 赵雨山, 邓二平, 陈彦, 等. 电动汽车用IGBT全桥模块(6 in 1)的热耦合作用机制[J]. 中国电机工程学报, 2021, 41(10): 3528-3535. |
| ZHAO Yushan, DENG Erping, CHEN Yan, et al. Thermal coupling mechanism of IGBT full-bridge module(6 in 1) for electric vehicles[J]. Proceedings of the CSEE, 2021, 41(10): 3528-3535. | |
| [26] | 陈宇, 吴强, 周宇, 等. 基于傅里叶级数解析热扩散角的功率模块热阻抗物理模型[J]. 中国电机工程学报, 2022, 42(2): 715-728. |
| CHEN Yu, WU Qiang, ZHOU Yu, et al. Physics-based thermal impedance model for power module by analytic Fourier series based heat spreading angle[J]. Proceedings of the CSEE, 2022, 42(2): 715-728. | |
| [27] | CALLEGARI J M S, CUPERTINO A F, DE NAZARETH FERREIRA V, et al. Minimum DC-link voltage control for efficiency and reliability improvement in PV inverters[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5512-5520. |
| [28] | 陈杰, 陈新, 冯志阳, 等. 微网系统并网/孤岛运行模式无缝切换控制策略[J]. 中国电机工程学报, 2014, 34(19): 3089-3097. |
| CHEN Jie, CHEN Xin, FENG Zhiyang, et al. A control strategy of seamless transfer between grid-connected and islanding operation for microgrid[J]. Proceedings of the CSEE, 2014, 34(19): 3089-3097. | |
| [29] | 丁雪妮, 陈民铀, 赖伟, 等. 多芯片并联IGBT模块老化特征参量甄选研究[J]. 电工技术学报, 2022, 37(13): 3304-3316. |
| DING Xueni, CHEN Minyou, LAI Wei, et al. Selection of aging characteristic parameter for multi-chips parallel IGBT module[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3304-3316. | |
| [30] | MA K, HE N, LISERRE M, et al. Frequency-domain thermal modeling and characterization of power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7183-7193. |
| [31] | PENG Y Z, WANG Q, WANG H R, et al. An on-line calibration method for TSEP-based junction temperature estimation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 13616-13624. |
| [32] | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 46-52. |
| YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 46-52. | |
| [33] | 吕玉坤, 魏壮, 王晶. 大伞裙结构对复合绝缘子积污特性的影响[J]. 中国电机工程学报, 2023, 43(10): 4046-4055. |
| Lü Yukun, WEI Zhuang, WANG Jing. Influence of large shed structure on contamination accumulation characteristics of composite insulator[J]. Proceedings of the CSEE, 2023, 43(10): 4046-4055. | |
| [34] | REIGOSA P D, WANG H, YANG Y H, et al. Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7171-7182. |
/
| 〈 |
|
〉 |