New Type Power System and the Integrated Energy

Online Steady-State Scheduling of New Power Systems Based on Hierarchical Reinforcement Learning

  • ZHAO Yingying ,
  • QIU Yue ,
  • ZHU Tianchen ,
  • LI Fan ,
  • SU Yun ,
  • TAI Zhenying ,
  • SUN Qingyun ,
  • FAN Hang
Expand
  • 1. State Grid Shanghai Municipal Electric Power Company, Shanghai 200125, China
    2. East China Electric Power Test and Research Institute Co., Ltd., Shanghai 200437, China
    3. Beihang University, Beijing 100191, China
    4. School of Economics and Management, North China Electric Power University, Beijing 100096, China

Received date: 2023-07-24

  Revised date: 2023-09-26

  Accepted date: 2023-11-22

  Online published: 2023-12-12

Abstract

With the construction of new power systems, the stochasticity of high-proportion renewable energy significantly increases the uncertainty in the operation of the power grid, posing severe challenges to its safe, stable, and economically efficient operation. Data-driven artificial intelligence methods, such as deep reinforcement learning, are becoming increasingly important for regulating and assisting decision-making in the power grid in the new power system. However, current online scheduling algorithms based on deep reinforcement learning still face challenges in modeling the high-dimensional decision space and optimizing scheduling strategies, resulting in low model search efficiency and slow convergence. Therefore, a novel online steady-state scheduling method is proposed for the new power system based on hierarchical reinforcement learning, which reduces the decision space by adaptively selecting key nodes for adjustment. In addition, a state context-aware module based on gated recurrent units is introduced to model the high-dimensional environmental state, and a model with the optimization objectives of comprehensive operating costs, energy consumption, and over-limit conditions is constructed considering various operational constraints. The effectiveness of the proposed algorithm is thoroughly validated through experiments on three standard test cases, including IEEE-118, L2RPN-WCCI-2022, and SG-126.

Cite this article

ZHAO Yingying , QIU Yue , ZHU Tianchen , LI Fan , SU Yun , TAI Zhenying , SUN Qingyun , FAN Hang . Online Steady-State Scheduling of New Power Systems Based on Hierarchical Reinforcement Learning[J]. Journal of Shanghai Jiaotong University, 2025 , 59(3) : 400 -412 . DOI: 10.16183/j.cnki.jsjtu.2023.344

References

[1] 王继业. 人工智能赋能源网荷储协同互动的应用及展望[J]. 中国电机工程学报, 2022, 42(21): 7667-7681.
  WANG Jiye. Application and prospect of source-grid-load-storage coordination enabled by artificial intelligence[J]. Proceedings of the CSEE, 2022, 42(21): 7667-7681.
[2] 叶志亮, 黎灿兵, 张勇军, 等. 含高比例气象敏感可再生能源电网日前调度时间颗粒度优化[J]. 上海交通大学学报, 2023, 57(7): 781-790.
  YE Zhiliang, LI Canbing, ZHANG Yongjun, et al. Optimization of day-ahead dispatch time resolution in power system with a high proportion of climate-sensitive renewable energy sources[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 781-790.
[3] RIFFONNEAU Y, BACHA S, BARRUEL F, et al. Optimal power flow management for grid connected PV systems with batteries[J]. IEEE Transactions on Sustainable Energy, 2011, 2(3): 309-320.
[4] AN L N, QUOC-TUAN T. Optimal energy management for grid connected microgrid by using dynamic programming method[C]//2015 IEEE Power & Energy Society General Meeting. Denver, USA: IEEE, 2015: 1-5.
[5] 李鹏, 王加浩, 黎灿兵, 等. 计及源荷不确定性与设备变工况特性的园区综合能源系统协同优化运行方法[J]. 中国电机工程学报, 2023, 43(20): 7802-7811.
  LI Peng, WANG Jiahao, LI Canbing, et al. Collaborative optimal scheduling of the community integrated energy system considering source-load uncertainty and equipment off-design performance[J]. Proceedings of the CSEE, 2023, 43(20): 7802-7811.
[6] GUO Y F, WU Q W, GAO H L, et al. Double-time-scale coordinated voltage control in active distribution networks based on MPC[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 294-303.
[7] 陈雨婷, 赵毅, 吴俊达, 等. 考虑碳排放指标的配电网经济调度方法[J]. 上海交通大学学报, 2023, 57(4): 442-451.
  CHEN Yuting, ZHAO Yi, WU Junda, et al. Economic dispatch method of distribution network considering carbon emission index[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 442-451.
[8] 戚艳, 尚学军, 聂靖宇, 等. 基于改进多目标灰狼算法的冷热电联供型微电网运行优化[J]. 电测与仪表, 2022, 59(6): 12-19.
  QI Yan, SHANG Xuejun, NIE Jingyu, et al. Optimization of CCHP micro-grid operation based on improved multi-objective grey wolf algorithm[J]. Electrical Measurement & Instrumentation, 2022, 59(6): 12-19.
[9] 刘新苗, 李卓环, 曾凯文, 等. 基于集群负荷预测的主动配电网多目标优化调度[J]. 电测与仪表, 2021, 58(5): 98-104.
  LIU Xinmiao, LI Zhuohuan, ZENG Kaiwen, et al. Multi-objective optimal dispatching of active distribution network based on cluster load prediction[J]. Electrical Measurement & Instrumentation, 2021, 58(5): 98-104.
[10] HIJJO M, FELGNER F, FREY G. PV-Battery-Diesel microgrid layout design based on stochastic optimization[C]//2017 6th International Conference on Clean Electrical Power. Santa Margherita Ligure, Italy: IEEE, 2017: 30-35.
[11] 潘险险, 陈霆威, 许志恒, 等. 适应多场景的微电网一体化柔性规划方法[J]. 上海交通大学学报, 2022, 56(12): 1598-1607.
  PAN Xianxian, CHEN Tingwei, XU Zhiheng, et al. A multi-scenario integrated flexible planning method for microgrid[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1598-1607.
[12] 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138.
  FU Yang, DING Zhiyin, MI Yang. Frequency control strategy for interconnected power systems with time delay considering optimal energy storage regulation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138.
[13] 李珂, 邰能灵, 张沈习. 基于改进粒子群算法的配电网综合运行优化[J]. 上海交通大学学报, 2017, 51(8): 897-902.
  LI Ke, TAI Nengling, ZHANG Shenxi. Comprehensive optimal dispatch of distribution network based on improved particle swarm optimization algorithm[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 897-902.
[14] BADAWY M O, SOZER Y. Power flow management of a grid tied PV-battery system for electric vehicles charging[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1347-1357.
[15] ERICK A O, FOLLY K A. Reinforcement learning approaches to power management in grid-tied microgrids: A review[C]//2020 Clemson University Power Systems Conference. Clemson, USA: IEEE, 2020: 1-6.
[16] JI Y, WANG J H, XU J C, et al. Real-time energy management of a microgrid using deep reinforcement learning[J]. Energies, 2019, 12(12): 2291.
[17] 余涛, 刘靖, 胡细兵. 基于分布式多步回溯Q(λ)学习的复杂电网最优潮流算法[J]. 电工技术学报, 2012, 27(4): 185-192.
  YU Tao, LIU Jing, HU Xibing. Optimal power flow for complex power grid using distributed multi-step backtrack Q(λ) learning[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 185-192.
[18] WEI Y F, ZHANG Z Q, YU F R, et al. Power allocation in HetNets with hybrid energy supply using actor-critic reinforcement learning[C]//GLOBECOM 2017-2017 IEEE Global Communications Conference. Singapore: IEEE, 2017: 1-5.
[19] 朱介北, 徐思旸, 李炳森, 等. 基于电网专家策略模仿学习的新型电力系统实时调度[J]. 电网技术, 2023, 47(2): 517-530.
  ZHU Jiebei, XU Siyang, LI Bingsen, et al. Real-time security dispatch of modern power system based on grid expert strategy imitation learning[J]. Power System Technology, 2023, 47(2): 517-530.
[20] HU J X, YE Y J, TANG Y, et al. Towards risk-aware real-time security constrained economic dispatch: A tailored deep reinforcement learning approach[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3972-3986.
[21] CUI H, YE Y J, HU J X, et al. Online preventive control for transmission overload relief using safe reinforcement learning with enhanced spatial-temporal awareness[J]. IEEE Transactions on Power Systems, 2024, 39(1): 517-532.
[22] 俞发强, 张名捷, 程语, 等. 需求响应下的并网型风-光-沼微能源网优化配置[J]. 上海交通大学学报, 2023, 57(1): 10-16.
  YU Faqiang, ZHANG Mingjie, CHENG Yu, et al. Optimal sizing of grid-connected wind-solar-biogas integrated energy system considering demand response[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 10-16.
[23] ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38.
[24] PATERIA S, SUBAGDJA B, TAN A H, et al. Hierarchical reinforcement learning[J]. ACM Computing Surveys, 2022, 54(5): 1-35.
[25] YOON D, HONG S, LEE B J, et al. Winning the l2RPN challenge: Power grid management via semi-markov afterstate actor-critic[C]//The Ninth International Conference on Learning Representations. Vienna, Austria: ICLR, 2021: 1-18.
[26] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. (2017-02-22)[2023-07-22]. https://arxiv.org/abs/1609.02907.pdf.
[27] WU L Z, KONG C, HAO X H, et al. A short-term load forecasting method based on GRU-CNN hybrid neural network model[J]. Mathematical Problems in Engineering, 2020, 2020: 1428104.
[28] LAN T, DUAN J J, ZHANG B, et al. AI-based autonomous line flow control via topology adjustment for maximizing time-series ATCs[C]//2020 IEEE Power & Energy Society General Meeting. Montreal, Canada: IEEE, 2020: 1-5.
[29] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[DB/OL]. (2015-09-09)[2023-07-22]. http://arxiv.org/abs/1509.02971v6.
[30] SERRé G, BOGUSLAWSKI E, DONNOT B, et al. Reinforcement learning for Energies of the future and carbon neutrality: A challenge design[DB/OL]. (2022-07-21) [2023-07-22]. http://arxiv.org/abs/2207.10330v1.
[31] DORFER M, FUXJ?GER A R, KOZáK K, et al. Power grid congestion management via topology optimization with AlphaZero[DB/OL]. (2022-11-10)[2023-07-22]. https://arxiv.org/abs/2211.05612.pdf.
[32] 季颖, 王建辉. 基于深度强化学习的微电网在线优化调度[J]. 控制与决策, 2022, 37(7): 1675-1684.
  JI Ying, WANG Jianhui. Online optimal scheduling of a microgrid based on deep reinforcement learning[J]. Control & Decision, 2022, 37(7): 1675-1684.
[33] 王甜婧, 汤涌, 郭强, 等. 基于知识经验和深度强化学习的大电网潮流计算收敛自动调整方法[J]. 中国电机工程学报, 2020, 40(8): 2396-2405.
  WANG Tianjing, TANG Yong, GUO Qiang, et al. Automatic adjustment method of power flow calculation convergence for large-scale power grid based on knowledge experience and deep reinforcement learning[J]. Proceedings of the CSEE, 2020, 40(8): 2396-2405.
[34] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[DB/OL]. (2017-07-20)[2023-07-22]. http://arxiv.org/abs/1707.06347v2.
[35] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[DB/OL]. (2018-01-04) [2023-07-22]. http://arxiv.org/abs/1801.01290v2.
[36] FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[DB/OL]. (2018-02-26)[2023-07-22]. http://arxiv.org/abs/1802.09477v3.
Outlines

/