Mechanical Engineering

Micro-Scale Heat Transfer Characteristics of Evaporating Meniscus for Alkali Metals in High-Temperature Heat Pipes

  • MA Shasha ,
  • DING Shengjie ,
  • LIU Limin ,
  • ZHAO Changying ,
  • GU Hanyang ,
  • GONG Shuai
Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-08-09

  Revised date: 2023-11-10

  Accepted date: 2023-11-17

  Online published: 2023-12-04

Abstract

To elucidate the micro-scale heat transfer mechanisms during the liquid-vapor phase change process in the wick of the high-temperature alkali metal heat pipes, this paper investigates the micro-scale heat transfer characteristics in the evaporating meniscus region for different alkali metals including potassium, sodium, and lithium by using the contact line heat transfer model. The distributions of liquid film thickness, contact angle, interface temperature, and heat flux at the evaporating meniscus region for different alkali metals are obtained under the same saturation vapor pressure and wall superheat. The results show that due to the high thermal conductivity of alkali metals, the contact line heat transfer characteristics of potassium, sodium, and lithium are significantly different from those of water. For alkali metals, the heat transfer in the micro region near the three-phase contact line is dominated by the thermal resistance at the vapor-liquid interface. Among these alkali metals, lithium has the highest micro-scale heat transfer performances. The thickness of the non-evaporating liquid film, the apparent contact angle and the pressure gradient of the liquid film are self-tuned according to the wall superheat, and a higher superheat results in a thinner non-evaporating liquid film, a larger apparent contact angle, and a larger pressure gradient. The adsorbed film region, where the non-evaporating liquid film is adsorbed on the wall, is dominated by the disjoining pressure. In the thin-film region, both disjoining pressure and capillary pressure contribute to the total pressure difference, which drives the liquid from the intrinsic meniscus region. The curvature of the vapor-liquid interface remains constant, and the capillary pressure dominates in the intrinsic meniscus region.

Cite this article

MA Shasha , DING Shengjie , LIU Limin , ZHAO Changying , GU Hanyang , GONG Shuai . Micro-Scale Heat Transfer Characteristics of Evaporating Meniscus for Alkali Metals in High-Temperature Heat Pipes[J]. Journal of Shanghai Jiaotong University, 2025 , 59(5) : 617 -627 . DOI: 10.16183/j.cnki.jsjtu.2023.378

References

[1] 卫光仁, 柴宝华, 韩冶, 等. 高温钠热管传热性能试验研究[J]. 原子能科学技术, 2021, 55(6): 1039-1046.
  WEI Guangren, CHAI Baohua, HAN Ye, et al. Experimental study on heat transfer performance of high temperature sodium heat pipe[J]. Atomic Energy Science and Technology, 2021, 55(6): 1039-1046.
[2] 余清远, 赵鹏程, 马誉高. 基于CFD方法的高温热管特性研究[J]. 核动力工程, 2022, 43(2): 70-76.
  YU Qingyuan, ZHAO Pengcheng, MA Yugao. CFD analysis on characteristics of high temperature heat pipe[J]. Nuclear Power Engineering, 2022, 43(2): 70-76.
[3] 刘逍, 田智星, 王成龙, 等. 高温热管传热特性实验研究[J]. 核动力工程, 2020(Sup.1): 106-111.
  LIU Xiao, TIAN Zhixing, WANG Chenglong, et al. Experimental study on heat transfer performance of high temperature potassium heat pipe[J]. Nuclear Power Engineering, 2020(Sup.1): 106-111.
[4] MANOJ R, KUMAR M, NARASIMHARAO R, et al. Performance evaluation of sodium heat pipe through parametric studies[J]. Frontiers in Heat Pipes, 2013, 3(4): 3003-3011.
[5] CISTERNA L H, VITTO G, CARDOSO M C, et al. Charging procedures: Effects on high temperature sodium thermosyphon performance[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020(42): 416-426.
[6] 田智星, 王成龙, 黄金露, 等. 热管冷却反应堆中高温钠热管传热极限实验研究[C]// 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第2册. 北京: 中国原子能出版社, 2022: 187-194.
  TIAN Zhixing, WANG Chenglong, HUANG Jinlu, et al. Experimental investigation on heat transfer limit of high-temperature sodium heat pipe[C]// Report on Advances in China Nuclear Science and Technology (Volume 7)—Proceedings of the 2021 Academic Annual Conference of the Chinese Nuclear Society, Volume 2. Beijing, China: China Atomic Energy Press, 2022: 187-194.
[7] HU G, HU R, ZOU L. Development of heat pipe reactor modeling in SAM[R]. Chicago, USA: Nuclear Science and Engineering Division, Argonne National Laboratory, 2019.
[8] PANDA K, DULERA I, BASAK A. Numerical simulation of high temperature sodium heat pipe for passive heat removal in nuclear reactors[J]. Nuclear Engineering and Design, 2017(323): 376-385.
[9] 秋穗正, 张泽秦, 张智鹏, 等. 海洋静默式热管反应堆热工水力特性研究[J]. 原子能科学技术, 2022, 56(6): 989-1004.
  QIU Suizheng, ZHANG Zeqin, ZHANG Zhipeng, et al. Study on thermal-hydraulic characteristics of ocean silent heat pipe cooled reactor[J]. Atomic Energy Science and Technology, 2022, 56(6): 989-1004.
[10] 白冰鹤. 高温热管内部流动相变强化传热研究[D]. 北京: 华北电力大学, 2021.
  BAI Binghe. Research on internal flow-phase change and heat transfer enhancement of high temperature heat pipe[D]. Beijing: North China Electric Power University, 2021.
[11] SHI S, LIU Y, YILGOR I, et al. A two-phase three-field modeling framework for heat pipe application in nuclear reactors[J]. Annals of Nuclear Energy, 2022(165): 108770.
[12] LEE W, SON G. Bubble dynamics and heat transfer during nucleate boiling in a microchannel[J]. Numerical Heat Transfer, Part A: Applications, 2008, 53(10): 1074-1090.
[13] STEPHAN P, BUSSE C. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls[J]. International Journal of Heat and Mass Transfer, 1992, 35(2): 383-391.
[14] WANG H, GARIMELLA S V, MURTHY J Y. Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3933-3942.
[15] KUNKELMANN C. Numerical modeling and investigation of boiling phenomena[D]. Darmstadt,Germany: Technische Universit?t, 2011.
[16] BATZDORF S. Heat transfer and evaporation during single drop impingement onto a superheated wall[D]. Darmstadt, Germany: Technische Universit?t, 2015.
[17] LAY J H, DHIR V K. Shape of a vapor stem during nucleate boiling of saturated liquids[J]. Journal of Heat Transfer, 1995, 117(2): 394-401.
[18] CHO H J, PRESTON D J, ZHU Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2016, 2(2): 1-17.
[19] LI Y, CHEN H, XIAO S, et al. Ultrafast diameter-dependent water evaporation from nanopores[J]. Acs Nano, 2019, 13(3): 3363-3372.
[20] DAVOODABADI A, GHASEMI H. Evaporation in nano/molecular materials[J]. Advances in Colloid and Interface Science, 2021, 290: 102385.
[21] XIAO S, MENG K, XIE Q, et al. Edge-enhanced ultrafast water evaporation from graphene nanopores[J]. Cell Reports Physical Science, 2022, 3(6): 1-15.
[22] 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.
  ZHAO Yapu. Surface and interface physical mechanics[M]. Beijing: Science Press, 2012.
[23] IYER S, KUMAR A, COVENTRY J, et al. Micro-scale heat transfer modelling of the contact line region of a boiling-sodium bubble[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120106.
[24] NARAYANAN S, FEDOROV A G, JOSHI Y K. Interfacial transport of evaporating water confined in nanopores[J]. Langmuir, 2011, 27(17): 10666-10676.
[25] CHOU C Y, DUAN C H. Surface charge enhanced kinetically-limited evaporation in nanopores[J]. International Journal of Heat and Mass Transfer, 2023, 204: 123865.
[26] WAYNER JR P, KAO Y, LACROIX L. The interline heat-transfer coefficient of an evaporating wetting film[J]. International Journal of Heat and Mass Transfer, 1976, 19(5): 487-492.
[27] ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. California, USA: Elsevier Academic Press, 2011.
[28] SCHRAGE R. A theoretical study of interphase mass transfer[M]. New York, USA: Columbia University Press, 1953.
[29] THOMSON W. On the equilibrium of vapour at a curved surface of liquid[J]. Proceedings of the Royal Society of Edinburgh, 1872, 7: 63-68.
[30] CAREY V P. Liquid-vapor phase-change phenomena[M]. 3rd ed. New York, USA: CRS Press, 2020.
[31] REAY D, MCGLEN R, KEW P. Heat pipes:Theory, design and applications[M]. 6th ed. Oxford, UK: Butterworth-Heinemann, 2013.
[32] VALENCIA J J, QUESTED P N. Thermophysical properties[M]//ASM handbook. USA: ASM, 2008: 468-481.
[33] RAJ R, KUNKELMANN C, STEPHAN P, et al. Contact line behavior for a highly wetting fluid under superheated conditions[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2664-2675.
[34] HU Z, GONG S. Mesoscopic model for disjoining pressure effects in nanoscale thin liquid films and evaporating extended meniscuses[J]. Langmuir, 2023, 39(37): 13359-13370.
[35] HANKS D F, LU Z, SIRCAR J, et al. High heat flux evaporation of low surface tension liquids from nanoporous membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7232-7238.
[36] VAARTSTRA G, ZHANG L, LU Z, et al. Capillary-fed, thin film evaporation devices[J]. Journal of Applied Physics, 2020, 128(13): 130901.
[37] 杨海旺, 代智文, 王成龙. 碱金属高温热管传热特性研究综述[J]. 热加工工艺, 2022, 51(20): 1-7.
  YANG Haiwang, DAI Zhiwen, WANG Chenglong. Review on transferring characteristics of alkali metal high temperature heat pipe[J]. Hot Working Technology, 2022, 51(20): 1-7.
Outlines

/