New Type Power System and the Integrated Energy

Asynchronous Coordinated Control Method for Regional Multi-Agent Integrated Energy Systems Considering Voltage Deviation

  • LU Bin ,
  • WANG Yixiao ,
  • PU Chuanqing ,
  • CHEN Yunhui ,
  • CHEN Bobo ,
  • FAN Feilong
Expand
  • 1. POWERCHINA Shanghai Electric Power Engineering Co., Ltd., Shanghai 200025, China
    2. College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-08-04

  Accepted date: 2023-10-19

  Online published: 2023-11-06

Abstract

In order to address the power demand and voltage control challenges of a multi-energy network of electricity, heat, and gas coupled within an integrated energy system is an urban park, a distributed coordination methodology that incorporates voltage deviation control is proposed. First, operation models for local equipment and power flow coupling optimization in the electricity-gas-heat network are established. Then, a multi-objective day-ahead dispatch model and a local dispatch model for each agent are proposed, aiming to minimize both the overall operating cost and the mean voltage deviation. To achieve this, an asynchronous coordination approach based on preference prior expressions and the alternating direction method of multipliers (ADMM) is employed to enable distributed scheduling. The integrated energy system composed of a 14-node power grid, a 14-node heating network, and a 15-node gas network is taken as a simulation example, and the accuracy and practicability of the multi-objective programming method proposed are verified by comparing it with the existing multi-objective solutions and analyzing the Pareto front coordinates. Additionly, under the same calculation load distribution, the computational efficiency of the asynchronous coordination method is 16.6% higher than that of the synchronous method, which verifies the effectiveness of the proposed algorithm.

Cite this article

LU Bin , WANG Yixiao , PU Chuanqing , CHEN Yunhui , CHEN Bobo , FAN Feilong . Asynchronous Coordinated Control Method for Regional Multi-Agent Integrated Energy Systems Considering Voltage Deviation[J]. Journal of Shanghai Jiaotong University, 2025 , 59(6) : 758 -767 . DOI: 10.16183/j.cnki.jsjtu.2023.369

References

[1] 谢光龙, 贾梦雨, 韩新阳, 等. 城市能源互联网的商业模式探讨[J]. 电力建设, 2018, 39(2): 10-17.
  XIE Guanglong, JIA Mengyu, HAN Xinyang, et al. Preliminary exploration on business model of urban energy Internet[J]. Electric Power Construction, 2018, 39(2): 10-17.
[2] 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45(6): 2256-2272.
  LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2272.
[3] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856.
  WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1856.
[4] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13.
  YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. A brief review to integrated energy system and energy Internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13.
[5] WANG Y L, WANG Y D, HUANG Y J, et al. Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network[J]. Applied Energy, 2019, 251: 113410.
[6] 于波, 吴亮, 卢欣, 等. 区域综合能源系统优化调度方法[J]. 电力建设, 2016, 37(1): 70-76.
  YU Bo, WU Liang, LU Xin, et al. Optimal dispatching method of integrated community energy system[J]. Electric Power Construction, 2016, 37(1): 70-76.
[7] 刘洪, 陈星屹, 李吉峰, 等. 基于改进CPSO算法的区域电热综合能源系统经济调度[J]. 电力自动化设备, 2017, 37(6): 193-200.
  LIU Hong, CHEN Xingyi, LI Jifeng, et al. Economic dispatch based on improved CPSO algorithm for regional power-heat integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6): 193-200.
[8] 徐宪东, 贾宏杰, 靳小龙, 等. 区域综合能源系统电/气/热混合潮流算法研究[J]. 中国电机工程学报, 2015, 35(14): 3634-3642.
  XU Xiandong, JIA Hongjie, JIN Xiaolong, et al. Study on hybrid heat-gas-power flow algorithm for integrated community energy system[J]. Proceedings of the CSEE, 2015, 35(14): 3634-3642.
[9] 孙国强, 王文学, 吴奕, 等. 辐射型电-热互联综合能源系统快速潮流计算方法[J]. 中国电机工程学报, 2020, 40(13): 4131-4142.
  SUN Guoqiang, WANG Wenxue, WU Yi, et al. Fast power flow calculation method for radiant electric-thermal interconnected integrated energy system[J]. Proceedings of the CSEE, 2020, 40(13): 4131-4142.
[10] 王英瑞, 曾博, 郭经, 等. 电-热-气综合能源系统多能流计算方法[J]. 电网技术, 2016, 40(10): 2942-2951.
  WANG Yingrui, ZENG Bo, GUO Jing, et al. Multi-energy flow calculation method for integrated energy system containing electricity, heat and gas[J]. Power System Technology, 2016, 40(10): 2942-2951.
[11] YAO S, GU W, LU S, et al. Dynamic optimal energy flow in the heat and electricity integrated energy system[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1): 179-190.
[12] ZHU M T, XU C S, DONG S F, et al. An integrated multi-energy flow calculation method for electricity-gas-thermal integrated energy systems[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 1-12.
[13] 李冰洁, 袁晓昀, 史静, 等. 综合能源系统电气热多能量流建模及优化[J]. 上海交通大学学报, 2024, 58(9): 1297-1308.
  LI Bingjie, YUAN Xiaoyun, SHI Jing, et al. Energy flow modeling and optimization of electric-gas-thermal integrated energy system[J]. Journal of Shanghai Jiaotong University, 2024, 58(9): 1297-1308.
[14] 靳旦, 范成围, 刘洋, 等. 基于改进苏霍夫降温算子的电-热混合潮流计算方法[J]. 南方电网技术, 2020, 14(10): 18-26.
  JIN Dan, FAN Chengwei, LIU Yang, et al. Calculation methodology for electric-thermal hybrid power flow based on improved sukhov cooling operator[J]. Southern Power System Technology, 2020, 14(10): 18-26.
[15] 丁雨昊, 吕干云, 刘永卫, 等. 考虑碳排放目标约束和需求侧响应的综合能源系统日前优化调度[J]. 南方电网技术, 2022, 16(8): 1-11.
  DING Yuhao, Lü Ganyun, LIU Yongwei, et al. Day-ahead optimal scheduling of integrated energy system considering carbon emission target constraints and demand side response[J]. Southern Power System Technology, 2022, 16(8): 1-11.
[16] 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41(3): 10-17.
  CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41(3): 10-17.
[17] LUO Z, WANG J H, XIAO N, et al. Low carbon economic dispatch optimization of regional integrated energy systems considering heating network and P2G[J]. Energies, 2022, 15(15): 5494.
[18] XI Y F, FANG J K, CHEN Z, et al. Optimal coordination of flexible resources in the gas-heat-electricity integrated energy system[J]. Energy, 2021, 223: 119729.
[19] QIN C, YAN Q Y, HE G. Integrated energy systems planning with electricity, heat and gas using particle swarm optimization[J]. Energy, 2019, 188: 116044.
[20] 朱海南, 王娟娟, 陈兵兵, 等. 考虑经济性与碳排放的电-气综合能源系统多目标规划[J]. 上海交通大学学报, 2023, 57(4): 422-431.
  ZHU Hainan, WANG Juanjuan, CHEN Bingbing, et al. Multi-objective planning of power-gas integrated energy system considering economy and carbon emission[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 422-431.
[21] 张鹏, 王丹, 贾宏杰, 等. 考虑可再生能源不确定性的综合能源系统优化调度方法[J]. 电气应用, 2017, 36(19): 38-44.
  ZHANG Peng, WANG Dan, JIA Hongjie, et al. Optimal scheduling method of comprehensive energy system considering uncertainty of renewable energy[J]. Electrotechnical Application, 2017, 36(19): 38-44.
[22] LIU H, FAN Z G, XIE H M, et al. Distributionally robust joint chance-constrained dispatch for electricity-gas-heat integrated energy system considering wind uncertainty[J]. Energies, 2022, 15(5): 1796.
[23] 刘蓉晖, 李阳, 杨秀, 等. 考虑需求响应的社区综合能源系统两阶段优化调度[J]. 太阳能学报, 2021, 42(9): 46-54.
  LIU Ronghui, LI Yang, YANG Xiu, et al. Two-stage optimal scheduling of community integrated energy system considering demand response[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 46-54.
[24] 周思怡, 杨欢红, 黄文焘, 等. 集装箱港口综合能源系统日前-日内两阶段滚动优化调度[J]. 上海交通大学学报, 2024, 58(9): 1357-1369.
  ZHOU Siyi, YANG Huanhong, HUANG Wentao, et al. Two-stage day-ahead and intra-day rolling optimal scheduling of container port integrated energy system[J]. Journal of Shanghai Jiaotong University, 2024, 58(9): 1357-1369.
[25] 顾洁, 白凯峰, 时亚军. 基于多主体主从博弈优化交互机制的区域综合能源系统优化运行[J]. 电网技术, 2019, 43(9): 3119-3134.
  GU Jie, BAI Kaifeng, SHI Yajun. Optimized operation of regional integrated energy system based on multi-agent master-slave game optimization interaction mechanism[J]. Power System Technology, 2019, 43(9): 3119-3134.
[26] 王杰, 刘念. 多主体综合能源系统分布式优化运行方法[J]. 南方电网技术, 2018, 12(3): 98-104.
  WANG Jie, LIU Nian. Distributed optimal operation method of integrated energy system with multi-agents[J]. Southern Power System Technology, 2018, 12(3): 98-104.
[27] 林勇棋, 邵振国, 陈飞雄, 等. 基于气网划分的电-气综合能源系统分布式低碳经济调度[J]. 电网技术, 2023, 47(7): 2639-2654.
  LIN Yongqi, SHAO Zhenguo, CHEN Feixiong, et al. Distributed low-carbon economic scheduling of integrated electricity and gas system based on gas network division[J]. Power System Technology, 2023, 47(7): 2639-2654.
[28] 黄海涛, 查俊吉, 陈曦, 等. 基于ADMM算法的多主体综合能源系统分布式协同优化研究[J]. 电测与仪表, 2023, 60(12): 44-50.
  HUANG Haitao, ZHA Junji, CHEN Xi, et al. Research on distributed cooperative optimization of multi-agent integrated energy system based on ADMM algorithm[J]. Electrical Measurement & Instrumentation, 2023, 60(12): 44-50.
[29] 王冬霞, 雷咏梅, 张泽宇. 面向通用一致性优化的通信高效的异步ADMM算法[J]. 计算机科学, 2022, 49(11): 309-315.
  WANG Dongxia, LEI Yongmei, ZHANG Zeyu. Communication efficient asynchronous ADMM algorithm oriented to general consistency optimization[J]. Computer Science, 49(11): 309-315.
[30] CHANG T H, HONG M Y, LIAO W C, et al. Asynchronous distributed alternating direction method of multipliers: Algorithm and convergence analysis[C]// 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, China: IEEE, 2016: 4781-4785.
[31] ZHANG R L, KWOK J T. Asynchronous distributed ADMM for consensus optimization[C]// Proceedings of the 31st International Conference on International Conference on Machine Learning. Beijing, China: ACM, 2014: 1701-1709.
[32] ZHANG C, XU Y, WANG Y, et al. Three-stage hierarchically-coordinated voltage/var control based on PV inverters considering distribution network voltage stability[J]. IEEE Transactions on Sustainable Energy, 2022, 13(2): 868-881.
[33] RANAMUKA D, AGALGAONKAR A P, MUTTAQI K M. Conservation voltage reduction and VAr management considering urban distribution system operation with solar-PV[J]. International Journal of Electrical Power & Energy Systems, 2019, 105: 856-866.
[34] WANG Z Y, WANG J H, CHEN B K, et al. MPC-based voltage/var optimization for distribution circuits with distributed generators and exponential load models[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2412-2420.
[35] XU Y, DONG Z Y, ZHANG R, et al. Multi-timescale coordinated voltage/var control of high renewable-penetrated distribution systems[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4398-4408.
[36] CHEN Z P, FAN F L, TAI N L, et al. Multi-objective voltage/VAR control for integrated port energy system considering multi-network integration[J]. International Journal of Electrical Power & Energy Systems, 2023, 150: 109092.
Outlines

/