Journal of Shanghai Jiaotong University >
Influence of DC-Bus Voltage on Synchronization Stability of Grid-Following Converters
Received date: 2023-07-14
Revised date: 2023-09-20
Accepted date: 2023-10-19
Online published: 2023-10-25
With the increasing penetration of new energy sources and the development of new power systems, grid-following converter (GFL) plays a crucial role in maintaining the stability of power systems. However, existing transient stability analyses of GFLs assume that the direct current (DC) side behaves as a constant-voltage source, neglecting the effects of DC-bus voltage control. This paper aims to investigate the transient instability mechanism of GFL considering DC-bus voltage control. First, a transient synchronous stability model considering DC voltage control is established, followed by an analysis of the transient synchronous stability of GFL under DC-bus voltage control. The findings indicate that DC voltage control increases the active current reference value and decreases the equivalent damping of the GFL, which in turn reduces its transient synchronous stability of GFL. By increasing the proportional coefficient or reducing the integral coefficient of DC-bus voltage control, transient synchronous stability can be appropriately improved. Finally, the theoretical analysis is validated through MATLAB/Simulink simulations.
SI Wenjia , CHEN Junru , ZHANG Chenglin , LIU Muyang . Influence of DC-Bus Voltage on Synchronization Stability of Grid-Following Converters[J]. Journal of Shanghai Jiaotong University, 2025 , 59(3) : 313 -322 . DOI: 10.16183/j.cnki.jsjtu.2023.321
[1] | 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904. |
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904. | |
[2] | 徐政. 高比例非同步机电源电网面临的三大技术挑战[J]. 南方电网技术, 2020, 14(2): 1-9. |
XU Zheng. Three technical challenges faced by power grids with high proportion of non-synchronous machine sources[J]. Southern Power System Technology, 2020, 14(2): 1-9. | |
[3] | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169. |
XIE Xiaorong, MA Ningjia, LIU Wei, et al. Functions of energy storage in renewable energy dominated power systems: Review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169. | |
[4] | 满九方, 谢小荣, 陈垒, 等. 柔性直流输电系统高频振荡建模分析与抑制策略综述[J]. 中国电机工程学报, 2023, 43(9): 3308-3322. |
MAN Jiufang, XIE Xiaorong, CHEN Lei, et al. Overview of modeling analysis and mitigation strategies of high-frequency resonance in MMC-HVDC systems[J]. Proceedings of the CSEE, 2023, 43(9): 3308-3322. | |
[5] | 李玲芳, 陈占鹏, 胡炎, 等. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
LI Lingfang, CHEN Zhanpeng, HU Yan, et al. Expansion planning of renewable energy power system considering flexibility and economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801. | |
[6] | 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839. |
REN Dawei, XIAO Jinyu, HOU Jinming, et al. Construction and evolution of China’s new power system under dual carbon goal[J]. Power System Technology, 2022, 46(10): 3831-3839. | |
[7] | KROPOSKI B, JOHNSON B, ZHANG Y, et al. Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy[J]. IEEE Power and Energy Magazine, 2017, 15(2): 61-73. |
[8] | 杨鹏, 刘锋, 姜齐荣, 等. “双高”电力系统大扰动稳定性: 问题、挑战与展望[J]. 清华大学学报(自然科学版), 2021, 61(5): 403-414. |
YANG Peng, LIU Feng, JIANG Qirong, et al. Large-disturbance stability of power systems with high penetration of renewables and inverts: Phenomena, challenges, and perspectives.[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 403-414. | |
[9] | 胡家兵, 袁小明, 程时杰. 电力电子并网装备多尺度切换控制与电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18): 5457-5467. |
HU Jiabing, YUAN Xiaoming, CHENG Shijie. Multi-time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2019, 39(18): 5457-5467. | |
[10] | 耿华, 何长军, 刘浴霜, 等. 新能源电力系统的暂态同步稳定研究综述[J]. 高电压技术, 2022, 48(9): 3367-3383. |
GENG Hua, HE Changjun, LIU Yushuang, et al. Overview on transient synchronization stability of renewable-rich power systems[J]. High Voltage Engineering, 2022, 48(9): 3367-3383. | |
[11] | NERC. 1, 200 MW fault induced solar photovoltaic resource interruption disturbance report-southern California 8/16/2016 event[R]. Atlanta, GA, USA: North American Electric Reliability Corporation, 2017. |
[12] | NERC. 900 MW fault induced solar photovoltaic resource interruption disturbance report-southern California event: October 9, 2017[R]. Atlanta, GA, USA: North American Electric Reliability Corporation, 2018. |
[13] | UK National Grid. Performance of phase-locked loop based converters[R]. London, UK: National Grid, 2017. |
[14] | 何秀强. 含高比例电力电子装备电力系统的同步问题研究[D]. 北京: 清华大学, 2021. |
HE Xiuqiang. Research on synchronization issues in power systems with high penetration of power electronics[D]. Beijing: Tsinghua University, 2021. | |
[15] | 张宇, 蔡旭, 张琛, 等. 并网变换器的暂态同步稳定性研究综述[J]. 中国电机工程学报, 2021, 41(5): 1687-1702. |
ZHANG Yu, CAI Xu, ZHANG Chen, et al. Transient synchronization stability analysis of voltage source converters: A review[J]. Proceedings of the CSEE, 2021, 41(5): 1687-1702. | |
[16] | MA S, GENG H, LIU L, et al. Grid-synchronization stability improvement of large scale wind farm during severe grid fault[J]. IEEE Transaction on Power Systems, 2018, 33(1): 216-226. |
[17] | 朱蜀, 刘开培, 秦亮, 等. 电力电子化电力系统暂态稳定性分析综述[J]. 中国电机工程学报, 2017, 37(14): 3948-3962. |
ZHU Shu, LIU Kaipei, QIN Liang, et al. Analysis of transient stability of power electronics dominated power system: An overview[J]. Proceedings of the CSEE, 2017, 37(14): 3948-3962. | |
[18] | DONG D, WEN B, BOROYEVICH D, et al. Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 310-321. |
[19] | TAUL M G, WANG X, DAVARI P, et al. An overview of assessment methods for synchronization stability of grid-connected converters under severe symmetrical grid faults[J]. IEEE transactions on power electronics, 2019, 34(10): 9655-9670. |
[20] | 张琛, 蔡旭, 李征. 全功率变换风电机组的暂态稳定性分析[J]. 中国电机工程学报, 2017, 37(14): 4018-4026. |
ZHANG Chen, CAI Xu, LI Zheng. Transient stability analysis of wind turbines with full-scale voltage source converter[J]. Proceedings of the CSEE, 2017, 37(14): 4018-4026. | |
[21] | HE X, GENG H, LI R Q, et al. Transient stability analysis and enhancement of renewable energy conversion system during LVRT[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1612-1623. |
[22] | ZHANG C, CAI X, RYGG A, et al. Modeling and analysis of grid-synchronizing stability of a type-IV wind turbine under grid faults[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105545. |
[23] | WU H, WANG X F. Design-oriented transient stability analysis of PLL-synchronized voltage-source converters[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3573-3589. |
[24] | LI Y B, WANG X F, GUO J B, et al. PLL synchronization stability analysis of MMC-connected wind farms under high-impedance AC faults[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2251-2261. |
[25] | 潘尔生, 王智冬, 王栋, 等. 基于锁相环同步控制的双馈风机弱电网接入稳定性分析[J]. 高电压技术, 2020, 46(1): 170-177. |
PAN Ersheng, WANG Zhidong, WANG Dong, et al. Stability analysis of phase-locked loop synchronized DFIGs in weak grids[J]. High Voltage Engineering, 2020, 46(1): 170-177. | |
[26] | MA R, LI J X, KURTHS J, et al. Generalized swing equation and transient synchronous stability with PLL-based VSC[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1428-1441. |
[27] | SHUAI Z K, SHEN C, LIU X, et al. Transient angle stability of virtual synchronous generators using Lyapunov’s direct method[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4648-4661. |
[28] | LIU Y, YAO J, PEI J X, et al. Transient stability enhancement control strategy based on improved PLL for grid connected VSC during severe grid fault[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 218-229. |
[29] | ZHANG C, MOLINAS M, LI Z, et al. Synchronizing stability analysis and region of attraction estimation of grid-feeding VSCs using sum-of-squares programming[J]. Frontiers in Energy Research, 2020, 8: 1-12. |
[30] | CHEN J, LIU M, O’DONNELL T, et al. Impact of current transients on the synchronization stability assessment of grid-feeding converters[J]. IEEE Transactions on Power Systems, 2020, 35(5): 4131-4134. |
[31] | CHEN J, GE C, YE H. Impact of the feed-forward compensation on the synchronization stability[C]//The 10th Renewable Power Generation Conference (RPG 2021). Online Conference: IET, 2021: 218-224. |
[32] | PENG Y, SHUAI Z, SHEN C, et al. Transient stabilization control of electric synchronous machine for preventing the collapse of DC-link voltage[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 82-93. |
/
〈 |
|
〉 |