New Type Power System and the Integrated Energy

Comprehensive Power Quality Management for Transformerless Unified Power Quality Conditioner Under Multiple Operating Conditions

  • FU Zhe ,
  • ZHANG Qi ,
  • LIU Yang ,
  • WAN Bohao ,
  • WANG Ting ,
  • SUN Yanfei
Expand
  • 1. State Grid Beijing Urban District Power Supply Company, Beijing 100034, China
    2. State Grid Beijing Fengtai Power Supply Company, Beijing 100073, China

Received date: 2023-06-29

  Revised date: 2023-09-11

  Accepted date: 2023-09-14

  Online published: 2023-09-27

Abstract

To address the power quality problems caused by power electronic loads, a two-leg topology-based transformerless unified power quality conditioner (TLTT-UPQC) is proposed, which can overcome the volume, weight, and magnetic saturation of power frequency transformer in the existing UPQCs, and can improve the power quality of the distribution network in a lightweight and highly flexible form to meet the high-quality electricity demand of loads. First, the working principle of TLTT-UPQC is analyzed from the perspective of circuit topology. Then, combined with theoretical analysis, the operating mechanisms of various power quality management functions are studied in scenarios such as grid voltage drop, rise and distortion, as well as resistor-inductance and nonlinear loads, based on which, the system control strategy is designed. Finally, a MATLAB-based simulation model is developed to verify the multifunctional operation performances of the TLTT-UPQC through simulation results.

Cite this article

FU Zhe , ZHANG Qi , LIU Yang , WAN Bohao , WANG Ting , SUN Yanfei . Comprehensive Power Quality Management for Transformerless Unified Power Quality Conditioner Under Multiple Operating Conditions[J]. Journal of Shanghai Jiaotong University, 2025 , 59(2) : 252 -265 . DOI: 10.16183/j.cnki.jsjtu.2023.281

References

[1] 张林林, 胡熊伟, 李鹏, 等. 基于极限学习机的电力系统暂态稳定评估方法[J]. 上海交通大学学报, 2019, 53(6): 749-756.
  ZHANG Linlin, HU Xiongwei, LI Peng, et al. Power system transient stability assessment based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 749-756.
[2] 查鹏程, 甘雅丽, 高海祐, 等. 电动汽车充电站接入配电网的电能质量评估[J]. 电测与仪表, 2022, 59(6): 69-75.
  ZHA Pengcheng, GAN Yali, GAO Haiyou, et al. Quality assessment of electric vehicle charging stations accessing distribution network[J]. Electrical Measurement & Instrumentation, 2022, 59(6): 69-75.
[3] 徐艳春, 樊士荣, 谢莎莎, 等. 一种适用于高渗透率主动配电网的电能质量调节器[J]. 电机与控制学报, 2022, 26(1): 46-56.
  XU Yanchun, FAN Shirong, XIE Shasha, et al. Power quality regulator designed for high permeability active distribution network[J]. Electric Machines and Control, 2022, 26(1): 46-56.
[4] 高本锋, 王飞跃, 于弘洋, 等. 应用静止同步串联补偿器抑制风电次同步振荡的方法[J]. 电工技术学报, 2020, 35(6): 1346-1356.
  GAO Benfeng, WANG Feiyue, YU Hongyang, et al. The suppression method of wind power sub-synchronous oscillation using static synchronous series compensator[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1346-1356.
[5] FEI J T, LIU L, CHEN Y. Finite-time disturbance observer of active power filter with dynamic terminal sliding mode controller[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(2): 1604-1615.
[6] D$\dot{\mathrm{I}}$R$\dot{\mathrm{I}}$K H, GEZEG$\dot{\mathrm{I}}$N C, D$\dot{\mathrm{I}}$R$\dot{\mathrm{I}}$K H S, Reactive power compensation with hybrid compensator combining a synchronous motor and switched capacitors[J]. Electric Power Systems Research, 2023, 216: 109010.
[7] LEITE J C, ABRIL I P, DE LIMA TOSTES M E, et al. Multi-objective optimization of passive filters in industrial power systems[J]. Electrical Engineering, 2017, 99(1): 387-395.
[8] 陶海军, 周犹松, 张国澎, 等. LCL型并网逆变器并联谐振机理分析及抑制方法[J]. 上海交通大学学报, 2020, 54(10): 1065-1073.
  TAO Haijun, ZHOU Yousong, ZHANG Guopeng, et al. Parallel resonance mechanism analysis and suppression method for LCL type grid-connected inverter[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1065-1073.
[9] SANJENBAM C D, SINGH B. Modified adaptive filter based UPQC for battery supported hydro driven PMSG system[J]. IEEE Transactions on Industrial Informatics, 2023, 19(7): 8018-8028.
[10] YADAV S K, PATEL A, MATHUR H D. Study on comparison of power losses between UPQC and UPQC-DG[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7384-7395.
[11] 张震霄, 年珩, 李培, 等. 储能型统一电能质量调节器电压补偿能力分析及提升方法[J]. 电力系统自动化, 2022, 46(23): 151-159.
  ZHANG Zhenxiao, NIAN Heng, LI Pei, et al. Voltage compensation capability analysis and improvement method for unified power quality conditioner with energy storage[J]. Automation of Electric Power Systems, 2022, 46(23): 151-159.
[12] 陈国栋, 宋晋峰, 张亮, 等. 动态电压恢复器注入变压器的直流偏磁抑制策略[J]. 中国电机工程学报, 2014, 34(28): 4983-4989.
  CHEN Guodong, SONG Jinfeng, ZHANG Liang, et al. Control strategy for eliminating DC magnetic flux in the injection transformer of a dynamic voltage restorer[J]. Proceedings of the CSEE, 2014, 34(28): 4983-4989.
[13] HAN J, LI X, JIANG Y, et al. Three-phase UPQC topology based on quadruple-active-bridge[J]. IEEE Access, 2020, 9: 4049-4058.
[14] HAN J, LI X, SUN Y, et al. Optimal design and decoupling control of series DC-link voltages for quadruple-active-bridge based UPQC[J]. International Journal of Electrical Power & Energy Systems, 2022, 140: 108038.
[15] ZHAO X J, BAI P S, ZHANG C J, et al. Analysis and validations of operation behaviors for dual active bridge-based unified power quality conditioner under different working conditions[J]. International Journal of Circuit Theory and Applications, 2023, 51(2): 541-556.
[16] FELINTO A S, CUNHA M F, JACOBINA C B. Three-phase unified power quality conditioner based on high-frequency link[J]. IEEE Transactions on Industry Applications, 2022, 58(5): 6397-6407.
[17] 张秀娟, 姜齐荣, 韩英铎. 一种新型的单相统一电能质量调节器[J]. 电力系统自动化, 2004, 28(23): 76-80.
  ZHANG Xiujuan, JIANG Qirong, HAN Yingduo. A novel single phase unified power quality conditioner[J]. Automation of Electric Power Systems, 2004, 28(23): 76-80.
[18] 张晓明, 于庆广, 张秀娟, 等. 基于直流隔离单元的新型统一电能质量调节器[J]. 电力电子技术, 2007, 41(1): 7-9.
  ZHANG Xiaoming, YU Qingguang, ZHANG Xiujuan, et al. Implementing of the unified power quality conditioner based on the DCI unit[J]. Power Electronics, 2007, 41(1): 7-9.
[19] LU Y, XIAO G C, WANG X F, et al. Control strategy for single-phase transformerless three-leg unified power quality conditioner based on space vector modulation[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 2840-2849.
[20] XU C Q, ZHOU M, LIU Y L, et al. Transformer-less single-phase unified power quality conditioner of no circulating current[J]. IET Power Electronics, 2020, 13(5): 970-980.
[21] CHEN Z Y, CHEN Y D, GUERRERO J M, et al. Generalized coupling resonance modeling, analysis, and active damping of multi-parallel inverters in microgrid operating in grid-connected mode[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(1): 63-75.
[22] GOLESTAN S, MOUSAZADEH S Y, GUERRERO J M, et al. A critical examination of frequency-fixed second-order generalized integrator-based phase-locked loops[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6666-6672.
Outlines

/