New Type Power System and the Integrated Energy

Adaptive Frequency Regulation of Doubly-Fed Pumped Storage Unit Considering Speed and Power Limit

  • LAO Wenjie ,
  • SHI Linjun ,
  • WU Feng ,
  • YANG Dongmei ,
  • LI Yang
Expand
  • 1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
    2. State Key Laboratory of Smart Grid Protection and Control, Nari Group Corporation(State Grid Electric Power Research Institute), Nanjing 211100, China

Received date: 2023-05-09

  Revised date: 2023-07-19

  Accepted date: 2023-07-24

  Online published: 2023-08-02

Abstract

Doubly-fed pumped storage unit can adjust its power flexibly through variable-speed operation, enabling it to participate in the frequency regulation of the grid in both generating and pumping modes. To explore the frequency regulation capability of doubly-fed pumped storage unit, frequency regulation modules adapted to the characteristics of units under different operating conditions are built, and a frequency regulation strategy with adaptive variable parameters considering the speed and power limit of the unit is proposed. First, based on the dynamic model of the unit considering reversible pump turbine, the frequency regulation modules are built, in which the frequency deviation is converted to additional power command in generating mode but to additional speed command in pumping mode. Then, the impacts of control parameters on the frequency dynamic response are analyzed, and the calculation method of optimal frequency regulation parameters under multi conditions is proposed based on the improved particle swarm optimization algorithm, which aims at minimizing the frequency deviation and takes the speed and power limit of the unit as constraints. Based on the proposed method, an adaptive frequency regulation strategy is further presented in which frequency regulation parameters adjust with the change of operating conditions of the unit. Finally, a four-machine two-zone system model with doubly-fed pumped storage unit is built, and the simulation results show that the frequency regulation strategy proposed can make the unit achieve a great frequency regulation performance under different operating conditions.

Cite this article

LAO Wenjie , SHI Linjun , WU Feng , YANG Dongmei , LI Yang . Adaptive Frequency Regulation of Doubly-Fed Pumped Storage Unit Considering Speed and Power Limit[J]. Journal of Shanghai Jiaotong University, 2025 , 59(1) : 28 -37 . DOI: 10.16183/j.cnki.jsjtu.2023.187

References

[1] DONALEK P J. Pumped storage hydro: Then and now[J]. IEEE Power & Energy Magazine, 2020, 18(5): 49-57.
[2] ALIZADEH BIDGOLI M, YANG W J, AHMADIAN A. DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance[J]. Renewable Energy, 2020, 159: 72-86.
[3] 李辉, 刘海涛, 宋二兵, 等. 双馈抽水蓄能机组参与电网调频的改进虚拟惯性控制策略[J]. 电力系统自动化, 2017, 41(10): 58-65.
  LI Hui, LIU Haitao, SONG Erbing, et al. Improved virtual inertia control strategy of doubly fed pumped storage unit for power network frequency modulation[J]. Automation of Electric Power Systems, 2017, 41(10): 58-65.
[4] NAG S, LEE K Y, SUCHITRA D. A comparison of the dynamic performance of conventional and ternary pumped storage hydro[J]. Energies, 2019, 12(18): 3513.
[5] 戴理韬, 高剑, 黄守道, 等. 变速恒频水力发电技术及其发展[J]. 电力系统自动化, 2020, 44(24): 169-177.
  DAI Litao, GAO Jian, HUANG Shoudao, et al. Variable-speed constant-frequency hydropower generation technology and its development[J]. Automation of Electric Power Systems, 2020, 44(24): 169-177.
[6] SCHMIDT J, KEMMETMüLLER W, KUGI A. Modeling and static optimization of a variable speed pumped storage power plant[J]. Renewable Energy, 2017, 111: 38-51.
[7] JOSEPH A, DESINGU K, SEMWAL R R, et al. Dynamic performance of pumping mode of 250 MW variable speed hydro-generating unit subjected to power and control circuit faults[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 430-441.
[8] 龚国仙, 吕静亮, 姜新建, 等. 参与一次调频的双馈式可变速抽水蓄能机组运行控制[J]. 储能科学与技术, 2020, 9(6): 1878-1884.
  GONG Guoxian, LV Jingliang, JIANG Xinjian, et al. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation[J]. Energy Storage Science & Technology, 2020, 9(6): 1878-1884.
[9] HUANG Y F, YANG W J, ZHAO Z G, et al. Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation[J]. Renewable Energy, 2023, 206: 769-783.
[10] 李辉, 王坤, 刘海涛, 等. 交流励磁抽水蓄能机组变下垂系数调频控制策略[J]. 电力自动化设备, 2018, 38(7): 68-73.
  LI Hui, WANG Kun, LIU Haitao, et al. Variable droop coefficient frequency control strategy of AC excited pumped storage unit[J]. Electric Power Automation Equipment, 2018, 38(7): 68-73.
[11] 朱珠, 潘文霞, 刘铜锤, 等. 变速抽蓄机组频率响应机理模型与性能研究[J]. 电网技术, 2023, 47(2): 463-474.
  ZHU Zhu, PAN Wenxia, LIU Tongchui, et al. Frequency response mechanism modeling and performance analysis of adjustable-speed pumped storage unit[J]. Power System Technology, 2023, 47(2): 463-474.
[12] ZHU Z, PAN W X, LIU T C, et al. Dynamic modeling and eigen analysis of adjustable-speed pumped storage unit in pumping mode under power regulation[J]. IEEE Access, 2021, 9: 155035-155047.
[13] 陈亚红, 邓长虹, 刘玉杰, 等. 抽水工况双馈可变速抽蓄机组机电暂态建模及有功-频率耦合特性[J]. 中国电机工程学报, 2022, 42(3): 942-957.
  CHEN Yahong, DENG Changhong, LIU Yujie, et al. Electromechanical transient modelling and active power-frequency coupling characteristics of doubly-fed variable speed pumped storage under pumping mode[J]. Proceedings of the CSEE, 2022, 42(3): 942-957.
[14] SHI L J, LAO W J, WU F, et al. Frequency regulation control and parameter optimization of doubly-fed induction machine pumped storage hydro unit[J]. IEEE Access, 2022, 10: 102586-102598.
[15] 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(Sup. 2): 42-50.
  JIN Haochun, GE Minhui, XU Bo. Optimization of DFIG comprehensive adaptive frequency regulation parameters based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup. 2): 42-50.
[16] 邵昊舒, 蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报, 2018, 52(10): 1166-1177.
  SHAO Haoshu, CAI Xu. Research status and prospect of inertia control for large scale wind turbines[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1166-1177.
[17] 全璐瑶. 基于虚拟水头技术的可变速抽水蓄能系统功率调节策略研究[D]. 北京: 华北电力大学, 2019.
  QUAN Luyao. Research on power regulation of adjustable-speed pumped-storage system based on virtual head technology[D]. Beijing: North China Electric Power University, 2019.
[18] CHEN Y H, XU W, LIU Y, et al. Reduced-order system frequency response modeling for the power grid integrated with the type-II doubly-fed variable speed pumped storage units[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10994-11006.
[19] PAN W X, ZHU Z, LIU T C, et al. Optimal control for speed governing system of on-grid adjustable-speed pumped storage unit aimed at transient performance improvement[J]. IEEE Access, 2021, 9: 40445-40457.
[20] 王同森, 程雪坤. 计及转速限值的双馈风机变下垂系数控制策略[J]. 电力系统保护与控制, 2021, 49(9): 29-36.
  WANG Tongsen, CHENG Xuekun. Variable droop coefficient control strategy of a DFIG considering rotor speed limit[J]. Power System Protection & Control, 2021, 49(9): 29-36.
[21] 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138.
  FU Yang, DING Zhiyin, MI Yang. Frequency control strategy for interconnected power systems with time delay considering optimal energy storage regulation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138.
[22] 游广增, 杭志, 陈凯, 等. 基于改进粒子群算法的风机频率控制研究[J]. 电力工程技术, 2020, 39(3): 43-50.
  YOU Guangzeng, HANG Zhi, CHEN Kai, et al. Wind turbine generator frequency control based on improved particle swarm optimization[J]. Electric Power Engineering Technology, 2020, 39(3): 43-50.
Outlines

/