New Type Power System and the Integrated Energy

Transient Frequency Interaction Between Grid-Following and Grid-Forming Sources in Windfarm Under Severe Grid Faults

  • ZHANG Yu ,
  • ZHANG Chen ,
  • BAO Yanhong ,
  • WU Feng ,
  • CAI Xu
Expand
  • 1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. NARI Group Corporation, State Grid Electric Power Research Institute, Nanjing 211106, China

Received date: 2023-06-15

  Revised date: 2023-07-24

  Accepted date: 2023-08-07

  Online published: 2023-08-16

Abstract

To address the issues of transient stability in heterogeneous wind farms with grid-forming energy storage, a transient analysis model of the heterogeneous system is developed, which incorporates both grid-following wind turbine units and grid-forming energy storage sources. The mechanism of frequency interaction among heterogeneous power sources during severe grid short-circuit faults is revealed by the model. It is discovered that grid-forming energy sources with slower rotor angle dynamics exhibits a frequency pinning effect on those with faster rotor angle dynamics, and the latter has a rotor angle co-driving effect on the former under the condition of frequency pinning. By solving the critical d-axis current, the impacts of wind power integration rate, the proportion of energy storage installation, and other parameters on frequency interaction are analyzed. The effects of wind turbine unit reactive power injection and the current limiting strategy of grid-forming energy storage sources are also discussed. Finally, the proposed mechanisms are comprehensively validated by simulations using MATLAB/Simulink platform.

Cite this article

ZHANG Yu , ZHANG Chen , BAO Yanhong , WU Feng , CAI Xu . Transient Frequency Interaction Between Grid-Following and Grid-Forming Sources in Windfarm Under Severe Grid Faults[J]. Journal of Shanghai Jiaotong University, 2024 , 58(12) : 1903 -1914 . DOI: 10.16183/j.cnki.jsjtu.2023.246

References

[1] 黄强, 郭怿, 江建华, 等. “双碳” 目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
  HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509.
[2] 黄远明, 张玉欣, 夏赞阳, 等. 考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J]. 上海交通大学学报, 2023, 57(4): 432-441.
  HUANG Yuanming, ZHANG Yuxin, XIA Zanyang, et al. Power system planning considering demand response resources and capacity value of energy storage[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 432-441.
[3] KATIRAEI F, IRAVANI R, HATZIARGYRIOU N, et al. Microgrids management[J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65.
[4] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4720-4732.
  MA Ningning, XIE Xiaorong, HE Jingbo, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15): 4720-4732.
[5] 张志强, 李秋彤, 余浩, 等. 海上直驱风电经柔直并网系统的次/超同步振荡特性分析[J]. 上海交通大学学报, 2022, 56(12): 1572-1583.
  ZHANG Zhiqiang, LI Qiutong, YU Hao, et al. Analysis of sub/super-synchronous oscillation of direct-drive offshore wind power grid-connected system via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1572-1583.
[6] RATHNAYAKE D B, AKRAMI M, PHURAILATPAM C, et al. Grid forming inverter modeling, control, and applications[J]. IEEE Access, 2021, 9: 114781-114807.
[7] DENIS G, PREVOST T, DEBRY M, et al. The Migrate project: The challenges of operating a transmission grid with only inverter-based generation. A grid-forming control improvement with transient current-limiting control[J]. IET Renewable Power Generation, 2018, 12(5): 523-529.
[8] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749.
[9] 沈阳武, 宋兴荣, 罗紫韧, 等. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293.
  SHEN Yangwu, SONG Xingrong, LUO Ziren, et al. Inertial control strategy for wind farm with distributed energy storage system based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293.
[10] 张宇, 蔡旭, 张琛, 等. 并网变换器的暂态同步稳定性研究综述[J]. 中国电机工程学报, 2021, 41(5): 1687-1702.
  ZHANG Yu, CAI Xu, ZHANG Chen, et al. Transient synchronization stability analysis of voltage source converters: A review[J]. Proceedings of the CSEE, 2021, 41(5): 1687-1702.
[11] 张琛, 蔡旭, 李征. 全功率变换风电机组的暂态稳定性分析[J]. 中国电机工程学报, 2017, 37(14): 4018-4026.
  ZHANG Chen, CAI Xu, LI Zheng. Transient stability analysis of wind turbines with full-scale voltage source converter[J]. Proceedings of the CSEE, 2017, 37(14): 4018-4026.
[12] QORIA T, GRUSON F, COLAS F, et al. Critical clearing time determination and enhancement of grid-forming converters embedding virtual impedance as current limitation algorithm[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1050-1061.
[13] ZHANG Y, ZHANG C, YANG R X, et al. Current-constrained power-angle characterization method for transient stability analysis of grid-forming voltage source converters[J]. IEEE Transactions on Energy Conversion, 2023, 38(2): 1338-1349.
[14] SHEN C, SHUAI Z K, SHEN Y, et al. Transient stability and current injection design of paralleled current-controlled VSCs and virtual synchronous generators[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1118-1134.
[15] 沈超, 帅智康, 程慧婕. 虚拟同步机并联电流控制型变换器系统暂态同步稳定性分析[J]. 电力系统自动化, 2021, 45(10): 115-123.
  SHEN Chao, SHUAI Zhikang, CHENG Huijie. Transient synchronization stability analysis of system with paralleled virtual synchronous generators and current-controlled converters[J]. Automation of Electric Power Systems, 2021, 45(10): 115-123.
[16] HE X Q, GENG H. Transient stability of power systems integrated with inverter-based generation[J]. IEEE Transactions on Power Systems, 2021, 36(1): 553-556.
[17] 黎晓, 李剑泽, 苏晨博, 等. 锁相环失步对同步发电机暂态功角稳定性的影响机理分析[J]. 电力系统自动化, 2022, 46(22): 101-110.
  LI Xiao, LI Jianze, SU Chenbo, et al. Influence mechanism analysis of phase locked loop out-of-synchronization on transient power angle stability of synchronous generators[J]. Automation of Electric Power Systems, 2022, 46(22): 101-110.
[18] LI M F, QUAN X J, WU Z J, et al. Modeling and transient stability analysis of mixed-GFM-GFL-based power system[C]// 2021 IEEE Sustainable Power and Energy Conference. Nanjing, China: IEEE, 2021: 2755-2759.
[19] 蔡旭, 李睿, 刘畅, 等. 高压直挂储能功率变换技术与世界首例应用[J]. 中国电机工程学报, 2020, 40(1): 200-211.
  CAI Xu, LI Rui, LIU Chang, et al. Transformerless high-voltage power conversion system for battery energy storage system and the first demonstration application in world[J]. Proceedings of the CSEE, 2020, 40(1): 200-211.
[20] ZHANG Y, ZHANG C, CAI X. Large-signal grid-synchronization stability analysis of PLL-based VSCs using Lyapunov’s direct method[J]. IEEE Transactions on Power Systems, 2022, 37(1): 788-791.
[21] 秦世耀, 齐琛, 李少林, 等. 电压源型构网风电机组研究现状及展望[J]. 中国电机工程学报, 2023, 43(4): 1314-1334.
  QIN Shiyao, QI Chen, LI Shaolin, et al. Review of the voltage-source grid forming wind turbine[J]. Proceedings of the CSEE, 2023, 43(4): 1314-1334.
[22] 张宇, 张琛, 蔡旭, 等. 虚拟同步机电流受限暂态电压支撑机理与改进故障穿越控制研究[J]. 中国电机工程学报, 2024, 44(15): 5996-6009.
  ZHANG Yu, ZHANG Chen, CAI Xu, et al. Current Constrained Transient Voltage Response Analysis and An Improved Fault Ride Through Control of the Virtual Synchronous Generator[J]. Proceedings of the CSEE, 2024, 44(15): 5996-6009.
Outlines

/