Journal of Shanghai Jiaotong University >
Numerical Study of Scale Effects of Tip Clearance Flow Field of Pump-Jet Propulsor
Received date: 2023-04-20
Revised date: 2023-07-13
Accepted date: 2023-08-07
Online published: 2023-08-17
Due to the tip clearance of the pump-jet propulsor (PJP), the flow field characteristics in the PJP are more complicated. To explore the influence of scale effects on the tip clearance flow field of PJP, the unsteady Reynolds-averaged Navier-Stokes (URANS) equation and the SST k-ω turbulence model are used. The computational domain is discretized by structured grid, and the sliding grid is used to deal with the relative motion between the rotor and stationary components. The feasibility of the numerical method is verified by grid uncertainty analysis, and the numerical results are in good agreement with the model-scale PJP experimental data. The open water performance of the three scale PJP models is numerically calculated and analyzed from the perspective of vorticity field and pressure field. The results show that the efficiency of the full-scale PJP model will be improved under all the advance coefficients, the vorticity collapse of the full-scale PJP is earlier, the intensity is lower, the pressure coefficient of the TLV vortex core center is smaller, and the fluctuating pressure amplitude between the tip clearance is lower.
YANG Chun , GUO Chunyu , SUN Cong , WANG Chao , YUE Qihui . Numerical Study of Scale Effects of Tip Clearance Flow Field of Pump-Jet Propulsor[J]. Journal of Shanghai Jiaotong University, 2024 , 58(11) : 1674 -1686 . DOI: 10.16183/j.cnki.jsjtu.2023.147
[1] | QIU C, PAN G, HUANG Q, et al. Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 102-115. |
[2] | LU L, PAN G, SAHOO P K. CFD prediction and simulation of a pumpjet propulsor[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8: 110-116. |
[3] | LI H, HUANG Q, PAN G, et al. Assessment of transition modeling for the unsteady performance of a pump-jet propulsor in model scale[J]. Applied Ocean Research, 2021, 108: 102537. |
[4] | 潘中永, 吴涛涛, 潘希伟, 等. 斜流式泵喷水推进器内部流动不稳定性分析[J]. 华中科技大学学报(自然科学版), 2012, 40(9): 118-121. |
PAN Zhongyong, WU Taotao, PAN Xiwei, et al. Instability analysis of internal flow in mixed-flow pump waterjet propulsion[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(9): 118-121. | |
[5] | 徐顺, 龙新平, 季斌, 等. 轴流式喷水推进泵内涡与空化相互作用[J]. 哈尔滨工程大学学报, 2020, 41(7): 951-957. |
XU Shun, LONG Xinping, JI Bin, et al. Investigation on the mechanism between vortex and cavitation in an axial waterjet pump[J]. Journal of Harbin Engineering University, 2020, 41(7): 951-957. | |
[6] | 徐顺, 季斌, 龙新平, 等. 不同来流工况下泵喷推进器外流场特性分析[J]. 水动力学研究与进展A辑, 2020, 35(4): 411-419. |
XU Shun, JI Bin, LONG Xinping, et al. Analysis of the flow characteristics of pump-jet propeller under different inflow conditions[J]. Chinese Journal of Hydrodynamics, 2020, 35(4): 411-419. | |
[7] | 张明宇, 俞伟强, 石钰. 泵喷推进器抗空化性能分析[J]. 船舶工程, 2021, 43(1): 50-55. |
ZHANG Mingyu, YU Weiqiang, SHI Yu. Anti-cavition performance analysis of pumpjet propulsor[J]. Ship Engineering, 2021, 43(1): 50-55. | |
[8] | 张凯, 叶金铭. 基于凹槽结构的泵喷推进器梢涡控制效果及计算方法[J]. 舰船科学技术, 2020, 42(3): 57-62. |
ZHANG Kai, YE Jinming. Research on the tip vortex control effect and calculation method of pump-jet thruster based on groove structure[J]. Ship Science and Technology, 2020, 42(3): 57-62. | |
[9] | 李福正, 黄桥高, 潘光, 等. 不同转速下前置泵喷推进器性能对比[J]. 西北工业大学学报, 2021, 39(5): 945-953. |
LI Fuzheng, HUANG Qiaogao, PAN Guang, et al. Comparative analysis of the hydrodynamic performance of pre-swirl pump-jet propulsor under different rotational speeds[J]. Journal of Northwestern Polytechnical University, 2021, 39(5): 945-953. | |
[10] | LI F Z, HUANG Q, PAN G, et al. Influence of various stator parameters on the open-water performance of pump-jet propulsion[J]. Journal of Marine Science and Engineering, 2021, 9: 1396. |
[11] | JI X, DONG X, YANG C. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: A numerical study[J]. Applied Ocean Research. 2021, 112: 102723. |
[12] | 潘光, 胡斌, 王鹏, 等. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报, 2013, 47(6): 932-937. |
PAN Guang, HU Bin, WANG Peng, et al. Numerical simulation of steady hydrodynamic performance of a pump-jet propulsor[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 932-937. | |
[13] | 鹿麟, 潘光. 泵喷推进器非定常空化性能数值模拟分析[J]. 上海交通大学学报, 2015, 49(2): 262-268. |
LU Lin, PAN Guang. Numerical simulation analysis of unsteady cavition performance of a pump-jet propulsor[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 262-268. | |
[14] | 施瑶, 潘光, 王鹏, 等. 泵喷推进器空化特性数值分析[J]. 上海交通大学学报, 2014, 48(8): 1059-1064. |
SHI Yao, PAN Guang, WANG Peng, et al. Numerical simulation of cavition characteristics of a pump-jet propeller[J]. Journal of Shanghai Jiao Tong University, 2014, 48(8): 1059-1064. | |
[15] | WANG C, WENG K, GUO C, et al. Prediction of hydrodynamic performance of pump propeller considering the effect of tip vortex[J]. Ocean Engineering, 2019, 171: 259-272. |
[16] | ABDEL-MAKSOUD M, HEINKE H J. Scale effects on ducted propellers[C]//In Proceedings of 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan:[s.n.], 2002: 744-759. |
[17] | BHATTACHARYYA A, KRASILNIKOV V, STEEN S. Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs[J]. Ocean Engineering, 2016, 112: 226-242. |
[18] | CHOI J K, PARK H G, KIM H T. A numerical study of scale effects on performance of a tractor type podded propeller[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6: 380-391. |
[19] | YAO H, ZHANG H. Numerical simulation of boundary-layer transition flow of a model propeller and the full-scale propeller for studying scale effects[J]. Journal of Marine Science and Technology, 2018, 23: 1004-1018. |
[20] | YANG Q, WANG Y, ZHANG Z. Scale effects on propeller cavitating hydrodynamic and hydroacoustic performances with non-uniform inflow[J]. Chinese Journal of Mechanical Engineering, 2013, 26: 414-426. |
[21] | LI H, HUANG Q, PAN G, et al. The scale effects on the open water performance of a pump-jet propulsor[J]. Journal of Marine Science and Technology, 2022, 27: 348-367. |
[22] | YANG J, FENG D, LIU L, et al. Research on the performance of pumpjet propulsor of different scales[J]. Journal of Marine Science and Engineering, 2022, 10(1): 78. |
[23] | 阳峻, 冯大奎, 张航, 等. 泵喷式推进器数值模拟及尺度效应分析[J]. 中国造船, 2020, 61 (Sup.2): 91-99. |
YANG Jun, FENG Dakui, ZHANG Hang, et al. Numerical simulation of pump jet propulsor and analysis of scale effect[J]. Shipbuilding of China, 2020, 61 (Sup.2): 91-99. | |
[24] | SHIRAZI A T, NAZARI M R, MANSHADI M D. Numerical and experimental investigation of the fluid flow on a full-scale pump jet thruster[J]. Ocean Engineering, 2019, 182: 527-539. |
[25] | 孙明宇, 董小倩, 杨晨俊. 泵喷推进器水动力尺度效应数值仿真与分析[J]. 水下无人系统学报, 2020, 28(5): 538-546. |
SUN Mingyu, DONG Xiaoqian, YANG Chenjun. Numerical simulation and analysis of hydrodynamic scale effect of pump-jet propulsor[J]. Shipbuilding of China, 2020, 28(5): 538-546. | |
[26] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
[27] | BALTAZAR J M, RIJPKEMA D, FALC?O DE CAMPOS J, et al. Prediction of the open-water performance of ducted propellers with a panel method[J]. Journal of Marine Science and Engineering, 2018, 6(1): 27. |
[28] | CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering: Transactions of the ASME, 2008, 130(7): 1-4. |
/
〈 |
|
〉 |