Electronic Information and Electrical Engineering

Unsupervised Fabric Defect Detection Based on Under-Complete Dictionary Reconstruction

  • LIU Jianxin ,
  • PAN Ruru ,
  • ZHOU Jian
Expand
  • College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China

Received date: 2023-05-22

  Revised date: 2023-06-16

  Accepted date: 2023-07-03

  Online published: 2023-07-20

Abstract

To address the issue that most current automatic fabric defect detection methods still require manual selection of training sets and cannot achieve unsupervised learning, an automatic unsupervised defect detection method using the median robust extended local binary pattern (MRELBP) feature for flawless image screening and an under-complete dictionary reconstruction method for defect point detection are proposed. An adaptive dictionary size search algorithm is also proposed to automatically select a suitable dictionary size. First, the algorithm selects the flawless images from fabric images. Then, K-SVD is applied to obtain an under-complete dictionary from the normal image blocks as the training set. Finally, the reconstruction-base scheme is used to identify defects with the structural similarity index measure (SSIM) threshold. Experimental results of 334 plain fabrics with warp, weft, and block defects show that compared to the K-SVD method that uses residual segmentation for defect detection, the proposed method increases the correct detection rate up to 21.81%, reduces the false detection rate up to 0.72%, and a 50% increase in detection speed per image on average. The proposed algorithm achieved an average correct detection rate of 83.29% on the AITEX dataset, demonstrating its effectiveness.

Cite this article

LIU Jianxin , PAN Ruru , ZHOU Jian . Unsupervised Fabric Defect Detection Based on Under-Complete Dictionary Reconstruction[J]. Journal of Shanghai Jiaotong University, 2025 , 59(2) : 283 -292 . DOI: 10.16183/j.cnki.jsjtu.2023.205

References

[1] 田宸玮, 王雪纯, 杨嘉能, 等. 织物瑕疵检测方法研究进展[J]. 计算机工程与应用, 2020, 56(12): 8-18.
  TIAN Chenwei, WANG Xuechun, YANG Jianeng, et al. Research progress on fabric defect detection methods[J]. Computer Engineering and Applications, 2020, 56(12): 8-18.
[2] NGAN H Y T, PANG G K H, YUNG N H C. Automated fabric defect detection—A review[J]. Image and Vision Computing, 2011, 29(7): 442-458.
[3] 王斌, 李敏, 雷承霖, 等. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(1): 219-227.
  WANG Bin, LI Min, LEI Chenglin, et al. Research progress in fabric defect detection based on deep learning[J]. Journal of Textile Research, 2023, 44(1): 219-227.
[4] 吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
  Lü Wentao, LIN Qiqi, ZHONG Jiaying, et al. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11): 197-206.
[5] 韩彦芳, 施鹏飞. 基于多层小波和共生矩阵的纹理表面缺损检测[J]. 上海交通大学学报, 2006, 40(3): 425-430.
  HAN Yanfang, SHI Pengfei. The texture defect detection based on multi-level wavelet transform and co-occurrence matrix[J]. Journal of Shanghai Jiao Tong University, 2006, 40(3): 425-430.
[6] HU G H, WANG Q H, ZHANG G H. Unsupervised defect detection in textiles based on Fourier analysis and wavelet shrinkage[J]. Applied Optics, 2015, 54(10): 2963-2980.
[7] HAMDI A A, SAYED M S, FOUAD M M, et al. Unsupervised patterned fabric defect detection using texture filtering and K-means clustering[C]// 2018 International Conference on Innovative Trends in Computer Engineering. Aswan, Egypt: IEEE, 2018: 130-144.
[8] MEI S, WANG Y D, WEN G J. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model[J]. Sensors, 2018, 18(4): 1064.
[9] WU Y, LOU L, WANG J. Global fabric defect detection based on unsupervised characterization[J]. Journal of Shanghai Jiaotong University (Science), 2021, 26(2): 231-238.
[10] PENG Z R, GONG X Y, WEI B G, et al. Automatic unsupervised fabric defect detection based on self-feature comparison[J]. Electronics, 2021, 10(21): 2652.
[11] 屠恩美, 杨杰. 半监督学习理论及其研究进展概述[J]. 上海交通大学学报, 2018, 52(10): 1280-1291.
  TU Enmei, YANG Jie. A review of semi-supervised learning theories and recent advances[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1280-1291.
[12] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
[13] LIU L, LAO S Y, FIEGUTH P W, et al. Median robust extended local binary pattern for texture classification[J]. IEEE Transactions on Image Processing, 2016, 25(3): 1368-1381.
[14] 王红雨, 尹午荣, 汪梁, 等. 基于HSV颜色空间的快速边缘提取算法[J]. 上海交通大学学报, 2019, 53(7): 765-772.
  WANG Hongyu, YIN Wurong, WANG Liang, et al. Fast edge extraction algorithm based on HSV color space[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 765-772.
[15] GUO Z H, ZHANG L, ZHANG D. Rotation invariant texture classification using LBP variance (LBPV) with global matching[J]. Pattern Recognition, 2010, 43(3): 706-719.
[16] LIU L, FIEGUTH P, GUO Y L, et al. Local binary features for texture classification: Taxonomy and experimental study[J]. Pattern Recognition, 2017, 62: 135-160.
[17] SILVESTRE-BLANES J, ALBERO-ALBERO T, MIRALLES I, et al. A public fabric database for defect detection methods and results[J]. Autex Research Journal, 2019, 19(4): 363-374.
[18] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[19] 吴莹, 汪军. 基于K-SVD学习字典的机织物纹理表征及应用[J]. 纺织学报, 2018, 39(2): 165-170.
  WU Ying, WANG Jun. Woven fabric texture representation and application based on K-SVD dictionary[J]. Journal of Textile Research, 2018, 39(2): 165-170.
Outlines

/