Journal of Shanghai Jiaotong University >
Depth Distribution Characteristics of Particle Velocity Field Intensity in Shallow Sea
Received date: 2023-03-03
Revised date: 2023-05-06
Accepted date: 2023-06-16
Online published: 2023-07-03
The depth distribution characteristics of particle velocity field intensity have had a significant impact on underwater acoustic detection and estimation. In this paper, based on the approximate conditions of the incoherent normal modes sum transformation to angular integration, the angular integration form of incoherent normal modes of particle velocity was derived, which avoided the complex calculations of eigenvalues and eigenfunctions while revealing the physical mechanism behind the significant variations in particle velocity intensity with source depth and symmetrical depth. The numerical results demonstrate that the analytical expression of the angular integration of incoherent particle velocity can facilitate fast computation and effectively characterize the depth distribution characteristics of particle velocity intensity. Additionally, due to the superposition effect of the amplitude function of normal modes, there are notable differences in the depth distribution of vertical and horizontal particle velocity. Subsequently, focusing on the intensity difference of particle velocity, the study analyzed the effects of parameters such as horizontal distance, source frequency, sound speed profile, and water depth on the depth distribution characteristics of particle velocity field intensity. The findings provide a theoretical basis for passive target depth estimation based on vector fields.
ZHANG Haigang , XIE Jinhuai , LIU Jiaqi , GONG Lijia , LI Zhi . Depth Distribution Characteristics of Particle Velocity Field Intensity in Shallow Sea[J]. Journal of Shanghai Jiaotong University, 2024 , 58(7) : 995 -1005 . DOI: 10.16183/j.cnki.jsjtu.2023.073
[1] | WESTON D E. Acoustic flux formulas for range-dependent ocean ducts[J]. The Journal of the Acoustical Society of America, 1980, 68(1): 269-281. |
[2] | WESTON D E. Wave-theory peaks in range-averaged channels of uniform sound velocity[J]. The Journal of the Acoustical Society of America, 1980, 68(1): 282-286. |
[3] | WESTON D E. Acoustic flux methods for oceanic guided waves[J]. The Journal of the Acoustical Society of America, 1980, 68(1): 287-296. |
[4] | FERLA C, PORTER M B. Receiver depth selection for passive sonar systems[J]. IEEE Journal of Oceanic Engineering, 1991, 16(3): 267-278. |
[5] | GERSHFELD D A, INGENITO F. Optimum depth of propagation in shallow water[R]. Washington, USA: Naval Research Laboratory, 1983. |
[6] | AN S, LEE K, SEONG W. Optimal operating depth search for active towed array sonar using simulated annealing[J]. Defence Science Journal, 2019, 69(4): 415-419. |
[7] | 王晓宇, 杨益新. 浅海波导中水平时反线列阵布放深度选择研究[J]. 声学技术, 2012, 31(3): 258-264. |
WANG Xiaoyu, YANG Yixin, Deployed depth selection of horizontal time reversal line array in shallow water waveguide[J]. Technical Acoustics, 2012, 31(3): 258-264. | |
[8] | 范培勤, 笪良龙, 晋朝勃, 等. 浅海中声纳系统最优工作深度选择研究[J]. 声学技术, 2011, 30(3): 46-48. |
FAN Peiqin, DA Lianglong, JIN Chaobo, et al. Research on the best depth selection for sonar systems in shallow sea[J]. Technical Acoustics, 2011, 30(3): 46-48. | |
[9] | 窦雨芮, 周其斗, 纪刚, 等. 声速剖面主导的浅海声传播最佳深度规律研究[J]. 中国舰船研究, 2020, 15(5): 102-113. |
DOU Yurui, ZHOU Qidou, JI Gang, et al. Study on the influence of sound speed profiles on the optimum depth of shallow water acoustic propagation[J]. Chinese Journal of Ship Research, 2020, 15(5): 102-113. | |
[10] | HARRISON C H. Ray convergence in a flux-like propagation formulation[J]. The Journal of the Acoustical Society of America, 2013, 133(6): 3777-3789. |
[11] | SERTLEK H O, AINSLIE M A. A depth-dependent formula for shallow water propagation[J]. The Journal of the Acoustical Society of America, 2014, 136(2): 573-582. |
[12] | SERTLEK H O, AINSLIE M A, HEANEY K D. Analytical and numerical propagation loss predictions for gradually range-dependent isospeed waveguides[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 1240-1252. |
[13] | DAHL P H, DALL’OSTO D R. Estimation of seabed properties and range from vector acoustic observations of underwater ship noise[J]. The Journal of the Acoustical Society of America, 2020, 147(4): EL345-EL350. |
[14] | PENG H S, LI F H. Geoacoustic inversion based on a vector hydrophone array[J]. Chinese Physics Letters, 2007, 24(7): 1977-1980. |
[15] | 祝捍皓, 郑广学, 张海刚, 等. 浅海环境下低频声信号传播特性研究[J]. 上海交通大学学报, 2017, 51(12): 1464-1472. |
ZHU Hanhao, ZHENG Guangxue, ZHANG Haigang, et al. Study on propagation characteristics of low frequency acoustic signal in shallow water environment[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1464-1472. | |
[16] | 张海刚, 杨士莪, 朴胜春, 等. 声矢量场计算方法[J]. 哈尔滨工程大学学报, 2010, 31(4): 470-475. |
ZHANG Haigang, YANG Shi’e, PIAO Shengchun, et al. A method for calculating an acoustic vector field[J]. Journal of Harbin Engineering University, 2010, 31(4): 470-475. | |
[17] | 马树青, 任群言, 朴胜春, 等. 声矢量场的抛物方程计算方法[J]. 哈尔滨工程大学学报, 2009, 30(7): 775-780. |
MA Shuqing, REN Qunyan, PIAO Shengchun, et al. Vector acoustic field calculation using the parabolic equation method[J]. Journal of Harbin Engineering University, 2009, 30(7): 775-780. | |
[18] | AINSLIE M A. Principles of sonar performance modeling[M]. Chichester, UK: Praxis Publishing, 2010: 33-36. |
[19] | 彭汉书. 浅海声场矢量物理特性及应用研究[D]. 北京: 中国科学院声学研究所, 2007. |
PENG Hanshu. Research on physics properties and application of the acoustic vector in shallow water[D]. Beijing: The Institute of Acoustics of the Chinese Academy of Sciences, 2007. | |
[20] | 张仁和. 水下声道中的平滑平均声场[J]. 声学学报, 1979(2):102-108. |
ZHANG Renhe. Smooth-averaged sound field in underwater sound channel[J]. Acta Acustica, 1979(2): 102-108. | |
[21] | WESTON D E. A moire fringe analog of sound propagation in shallow water[J]. The Journal of the Acoustical Society of America, 1960, 32: 647-654. |
[22] | CHAPMAN D M, WARD P D, ELLIS D D. The effective depth of a Pekeris ocean waveguide, including shear wave effects[J]. The Journal of the Acoustical Society of America, 1989, 85: 648-653. |
[23] | TINDLE C T, WESTON D E. Connection of acoustic beam displacement, cycle distances and attenuations for rays and normal modes[J]. The Journal of the Acoustical Society of America, 1980(67): 1614-1622. |
[24] | MORSE P M, FESHBACH H. Methods of theoretical physics[M]. New York, USA: McGraw-Hill, 1953: 1092-1100. |
[25] | PORTER M B. The KRAKEN normal mode program[M]. La Spezia, Italy: Saclant Undersea Research Centre, 2001: 69-158. |
/
〈 |
|
〉 |