Original article

Spatio-Temporal Adaptation Assessment of Key Technologies of New Distribution Network Based on 3D Space

  • LIU Dongming ,
  • ZENG Qingbin ,
  • ZHANG Yongjun ,
  • ZHANG Jun ,
  • FAN Wei ,
  • LIU Yu
Expand
  • 1. School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China
    2. Power Dispatching Control Center of Guangdong Power Grid Corporation, Guangzhou 510600, China

Received date: 2023-02-14

  Revised date: 2023-05-16

  Accepted date: 2023-06-14

  Online published: 2023-06-25

Abstract

In the context of the development of new power systems, a three-dimensional spatio-temporal adaptation assessment model based on grid satisfaction, spatio-temporal resources, and effectiveness improvement is proposed to address the problems of distribution network planning and construction, the adaptability of key distribution network technologies to the space and time in which they are applied, and the difficulty of quantifying application defects. Subjective assignment in hierarchical analysis is improved using continuous interval ordered weighted average operator, and the problem of bias of the single assignment method is solved by the introduction of a subjective-objective combination assignment method constructed by the conflicting correlation among criteria method. The degree of affiliation of each indicator is determined using the fuzzy integrated evaluation method and the evaluation level is then obtained. The case studies show that the proposed method can quantify the degree of fit between the key technologies of the distribution network and the space-time, identify the adaptability of the key technologies to different space-times and the degree of satisfaction of the application of the technologies in different space-times, and reveal the weaknesses of the key technologies of the distribution network, which can help improve the efficiency and effectiveness of the investment in the distribution network and better serve the high-quality development of the economy and society.

Cite this article

LIU Dongming , ZENG Qingbin , ZHANG Yongjun , ZHANG Jun , FAN Wei , LIU Yu . Spatio-Temporal Adaptation Assessment of Key Technologies of New Distribution Network Based on 3D Space[J]. Journal of Shanghai Jiaotong University, 2024 , 58(10) : 1489 -1499 . DOI: 10.16183/j.cnki.jsjtu.2023.053

References

[1] 刘云鹏, 刘一瑾, 刘刚, 等. 电力变压器智能运维的数字孪生体构想[J]. 中国电机工程学报, 2023, 43(22): 8636-8652.
  LIU Yunpeng, LIU Yijin, LIU Gang, et al. Digital twin conception of intelligent operation and maintenance of power transformer[J]. Proceedings of the CSEE, 2023, 43(22): 8636-8652.
[2] 侯杰, 吴桂芳, 崔勇, 等. 硅基微型静电谐振式直流电场传感器建模与仿真分析[J]. 中国电机工程学报, 2021, 41(1): 374-382.
  HOU Jie, WU Guifang, CUI Yong, et al. Modeling and simulation analysis of silicon-based miniature electrostatic resonant DC electric field sensor[J]. Proceedings of the CSEE, 2021, 41(1): 374-382.
[3] 吴阳, 张品佳. 基于漏电流测量的配电网电缆高精度状态感知技术研究[J]. 中国电机工程学报, 2022, 42(8): 2929-2940.
  WU Yang, ZHANG Pinjia. High-accuracy condition sensing for power cables in distribution grids based on leakage current measurement approach: An overview[J]. Proceedings of the CSEE, 2022, 42(8): 2929-2940.
[4] 胡选正, 丛伟, 古千硕, 等. 基于电表量测数据的低压供电网络拓扑识别方法[J/OL]. 电力自动化设备. https://doi.org/10.16081/j.epae.202208044.
  HU Xuanzheng, CONG Wei, GU Qianshuo, et al. Topology identification method for low-voltage power supply network based on metermeasurement data[J/OL]. Electric Power Automation Equipment. https://doi.org/10.16081/j.epae.202208044.
[5] 李坤, 周来, 张勇军, 等. 基于量测数据质量的低压台区拓扑识别结果可信度评价[J]. 电力系统自动化, 2021, 45(17): 99-107.
  LI Kun, ZHOU Lai, ZHANG Yongjun, et al. Credibility evaluation of topology identification results in low-voltage distribution network based on quality of measured data[J]. Automation of Electric Power Systems, 2021, 45(17): 99-107.
[6] ZHOU L, LI Q H, ZHANG Y J, et al. Consumer phase identification under incomplete data condition with dimensional calibration[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106851.
[7] 孙轶恺, 漆淘懿, 张利军, 等. 市场环境下含冰蓄冷空调的综合能源系统优化运行[J]. 南方电网技术, 2022, 16(4): 95-104.
  SUN Yikai, QI Taoyi, ZHANG Lijun, et al. Optimal operation of integrated energy system including ice-storage air-conditioning in power market[J]. Southern Power System Technology, 2022, 16(4): 95-104.
[8] 杨夯, 黄小庆, 于慎仟, 等. 电化学储能电站主动安全研究[J]. 电力自动化设备, 2023, 43(8): 78-87.
  YANG Hang, HUANG Xiaoqing, YU Shenqian, et al. Research on active safety of electrochemical energy storage station[J]. Electric Power Automation Equipment, 2023, 43(8): 78-87.
[9] 周椿奇, 向月, 童话, 等. 轨迹数据驱动的电动汽车充电需求及V2G可调控容量估计[J]. 电力系统自动化, 2022, 46(12): 46-55.
  ZHOU Chunqi, XIANG Yue, TONG Hua, et al. Trajectory-data-driven estimation of electric vehicle charging demand and vechicle-to-grid regulable capacity[J]. Automation of Electric Power Systems, 2022, 46(12): 46-55.
[10] 陈果, 王秀丽, 原晟淇, 等. 适用于大规模充电场站的深度强化学习有序充电策略[J]. 电力系统自动化, 2023, 47(2): 88-95.
  CHEN Guo, WANG Xiuli, YUAN Shengqi, et al. Coordinated charging strategy applicable to large-scale charging stations based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2023, 47(2): 88-95.
[11] 张勇军, 羿应棋, 李立浧, 等. 双碳目标驱动的新型低压配电系统技术展望[J]. 电力系统自动化, 2022, 46(22): 1-12.
  ZHANG Yongjun, YI Yingqi, LI Licheng, et al. Prospect of new low-voltage distribution system technology driven by carbon emission peak and carbon neutrality targets[J]. Automation of Electric Power Systems, 2022, 46(22): 1-12.
[12] 龚萍, 罗舒琦, 张远欣, 等. 综合能源系统的技术评价指标体系[J]. 电器与能效管理技术, 2021(12): 28-33.
  GONG Ping, LUO Shuqi, ZHANG Yuanxin, et al. Technical evaluation index system for integrated energy system[J]. Electrical & Energy Management Technology, 2021(12): 28-33.
[13] 肖勇, 陆文升, 李云涛, 等. 城市配电网发展形态指标体系及其评估方法研究[J]. 电力系统保护与控制, 2021, 49(1): 62-71.
  XIAO Yong, LU Wensheng, LI Yuntao, et al. Research on index system and its evaluation methods of urban distribution network development form[J]. Power System Protection & Control, 2021, 49(1): 62-71.
[14] 侯金鸣, 孙蔚, 肖晋宇, 等. 电力系统关键技术进步与低碳转型的协同优化[J]. 电力系统自动化, 2022, 46(13): 1-9.
  HOU Jinming, SUN Wei, XIAO Jinyu, et al. Collaborative optimization of key technology progress and low-carbon transition of power systems[J]. Automation of Electric Power Systems, 2022, 46(13): 1-9.
[15] FAN W, LIU D M, YANG Z N, et al. A multidimensional adaptive assessment model for innovative technologies in new-type power system[C]// 2023 5th Asia Energy and Electrical Engineering Symposium. Chengdu, China: IEEE, 2023: 796-802.
[16] 罗宁, 贺墨琳, 高华, 等. 基于改进的AHP-CRITIC组合赋权与可拓评估模型的配电网综合评价方法[J]. 电力系统保护与控制, 2021, 49(16): 86-96.
  LUO Ning, HE Molin, GAO Hua, et al. Comprehensive evaluation method for a distribution network based on improved AHP-CRITIC combination weighting and an extension evaluation model[J]. Power System Protection & Control, 2021, 49(16): 86-96.
[17] 陈祉如, 郭亮, 杜艳, 等. 基于改进层次分析法的电能计量系统综合评价[J]. 山东大学学报(工学版), 2022, 52(6): 167-175.
  CHEN Zhiru, GUO Liang, DU Yan, et al. Comprehensive evaluation of metering system based on improved analytic hierarchy process[J]. Journal of Shandong University (Engineering Science), 2022, 52(6): 167-175.
[18] 徐悦, 李博, 孙建军, 等. 基于运行韧性评价的配电网电压暂降治理评估[J]. 电力系统自动化, 2021, 45(5): 104-110.
  XU Yue, LI Bo, SUN Jianjun, et al. Evaluation of voltage sag management in distribution network based on operation resilience assessment[J]. Automation of Electric Power Systems, 2021, 45(5): 104-110.
[19] CHEN X, QIU J, REEDMAN L, et al. A statistical risk assessment framework for distribution network resilience[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4773-4783.
[20] 亓彦珣. 城市配电网发展形态评估方法研究[D]. 保定: 华北电力大学(保定), 2020.
  QI Yanxun. Research on evaluation method of urban distribution network development form[D]. Baoding: North China Electric Power University, 2020.
[21] 杨锡运, 刘欢, 张彬, 等. 组合权重相似日选取方法及光伏输出功率预测[J]. 电力自动化设备, 2014, 34(9): 118-122.
  YANG Xiyun, LIU Huan, ZHANG Bin, et al. Similar day selection based on combined weight and photovoltaic power output forecasting[J]. Electric Power Automation Equipment, 2014, 34(9): 118-122.
[22] KABIRIFAR M, FOTUHI-FIRUZABAD M, MOEINI-AGHTAIE M, et al. Reliability-based expansion planning studies of active distribution networks with multiagents[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 4610-4623.
[23] 张显, 史连军. 中国电力市场未来研究方向及关键技术[J]. 电力系统自动化, 2020, 44(16): 1-11.
  ZHANG Xian, SHI Lianjun. Future research areas and key technologies of electricity market in China[J]. Automation of Electric Power Systems, 2020, 44(16): 1-11.
[24] LI Z H, WU W C, TAI X, et al. Optimization model-based reliability assessment for distribution networks considering detailed placement of circuit breakers and switches[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3991-4004.
[25] 高孟友. 智能配电网分布式馈线自动化技术[D]. 济南: 山东大学, 2016.
  GAO Mengyou. Distributed feeder automation technology for intelligent distribution network[D]. Jinan: Shandong University, 2016.
Outlines

/