Journal of Shanghai Jiaotong University >
Capacity Allocation Strategy of Energy Storage in Low-Carbon Park Considering Equivalent Energy Storage Characteristics of Thermal System
Received date: 2022-12-09
Revised date: 2023-03-21
Accepted date: 2023-04-28
Online published: 2023-05-11
Under the low-carbon development goal, energy storage allocation is the key measure to ensure the safe and economic operation of low-carbon parks, and to reduce carbon emissions. To solve the problems of inaccurate carbon emission calculation and insufficient utilization of equivalent energy storage resources in low-carbon parks, this paper proposes a dynamic emission factor calculation method based on the carbon emission flow theory, which realizes the accurate measurement of indirect carbon emissions from park electricity consumption. Then, taking into account the available equivalent energy storage resources in the park, it proposes an energy storage capacity optimization allocation model considering the equivalent energy storage characteristics of thermal system, and uses the big M method to equivalently transform the nonlinear constraints in the model. Finally, it conducts simulation analysis based on a case system to verify the correctness and effectiveness of the proposed model.
CHEN Hui , HE Gengsheng , LIU Yuliang , ZENG Hongmei , ZHANG Shixu , LI Yaowang . Capacity Allocation Strategy of Energy Storage in Low-Carbon Park Considering Equivalent Energy Storage Characteristics of Thermal System[J]. Journal of Shanghai Jiaotong University, 2024 , 58(6) : 863 -871 . DOI: 10.16183/j.cnki.jsjtu.2022.507
[1] | 中华人民共和国国家发展和改革委员会. 国家能源局关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL]. (2022-02-10)[2022-11-07]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202202/t20220210_1314511.html?code=&state=123. |
National Development and Reform Commission. Opinions of the National Energy Administration on improving the institutional mechanisms and policy measures for the green and low-carbon transformation of energy[EB/OL]. (2022-02-10)[2022-11-07]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202202/t20220210_1314511.html?code=&state=123. | |
[2] | 张敏, 王金浩, 常潇, 等. 考虑可再生能源不确定性的热-电耦合微能源系统多目标鲁棒规划方法[J]. 中国电力, 2021, 54(4): 119-129. |
ZHANG Min, WANG Jinhao, CHANG Xiao, et al. A multi-objective robust planning method for thermal-electrical coupling micro-energy system considering the uncertainty of renewable energy[J]. Electric Power, 2021, 54(4): 119-129. | |
[3] | 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38. |
XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41(9): 31-38. | |
[4] | 周立立, 向月, 陈凌天. 基于风险-收益分析的用户侧储能容量经济配置研究[J]. 中国电力, 2021, 54(9): 187-197. |
ZHOU Lili, XIANG Yue, CHEN Lingtian. Research on economic allocation of user-side energy storage capacity based on risk-benefit analysis[J]. Electric Power, 2021, 54(9): 187-197. | |
[5] | LIU X. Research on optimal placement of low-carbon equipment capacity in integrated energy system considering carbon emission and carbon trading[J]. International Journal of Energy Research, 2022, 46(14): 20535-20555. |
[6] | 李姚旺, 张宁, 张世旭, 等. 面向电力系统的多能源云储能模式:基本概念与研究展望[J]. 中国电机工程学报, 2023, 43(6): 2179-2190. |
LI Yaowang, ZHANG Ning, ZHANG Shixu, et al. Multi-energy cloud energy storage for power systems: Basic concepts and research prospects[J]. Proceedings of the Chinese Society for Electrical Engineering, 2023, 43(6): 2179-2190. | |
[7] | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7): 38-43. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of Electric Power Systems, 2012, 36(7): 38-43. | |
[8] | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36(11): 44-49. | |
[9] | 周天睿, 康重庆, 徐乾耀, 等. 碳排放流在电力网络中分布的特性与机理分析[J]. 电力系统自动化, 2012, 36(15): 39-44. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Analysis on distribution characteristics and mechanisms of carbon emission flow in electric power network[J]. Automation of Electric Power Systems, 2012, 36(15): 39-44. | |
[10] | IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. (2020-07-01)[2022-08-19]. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html. |
[11] | 蔡杰, 张松岩, 杜治, 等. 含光热集热模块的先进绝热压缩空气储能系统容量配置策略[J]. 电力自动化设备, 2020, 40(7): 165-176. |
CAI Jie, ZHANG Songyan, DU Zhi, et al. Capacity allocation strategy of advanced adiabatic compressed air energy storage system with solar thermal collector module[J]. Electric Power Automation Equipment, 2020, 40(7): 165-176. | |
[12] | LU S, GU W, MENG K, et al. Thermal inertial aggregation model for integrated energy systems[J]. IEEE Transactions on Power Systems, 2019, 35(3): 2374-2387. |
[13] | 张磊, 罗毅, 罗恒恒, 等. 基于集中供热系统储热特性的热电联产机组多时间尺度灵活性协调调度[J]. 中国电机工程学报, 2018, 38(4): 985-998. |
ZHANG Lei, LUO Yi, LUO Hengheng, et al. Scheduling of integrated heat and power system considering multiple time-scale flexibility of CHP unit based on heat characteristic of DHS[J]. Proceedings of the CSEE, 2018, 38(4): 985-998. |
/
〈 |
|
〉 |