Electronic Information and Electrical Engineering

A Method for Autonomous Driving Trajectory Planning in Parking Environments

Expand
  • Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-11-03

  Accepted date: 2022-01-11

  Online published: 2023-03-30

Abstract

Local trajectory planning is one of the key technologies of the autonomous valet parking system. In this scenario, there exist problems such as long planning time, discontinuous curvature, and insufficient safety in local trajectory planning methods for intelligent vehicles. Aimed at these problems, this paper proposes a trajectory planning method for intelligent vehicles in parking scenarios. This method improves the real-time performance and security of the initial path search by improving the analytic expansions of the hybrid A* algorithm and introducing the risk function. Further, according to the initial path, the quadratic programming method is used to realize path smoothing and speed planning. Finally, the trajectory generation is completed. Simulation experiments show that the method can improve the real-time, smoothness, and safety of intelligent vehicle trajectory planning. In addition, in actual parking environment, the feasibility of the method is verified in real-world vehicle experiments.

Cite this article

LIN Chun, HE Yuesheng, FANG Xingqi, WANG Chunxiang . A Method for Autonomous Driving Trajectory Planning in Parking Environments[J]. Journal of Shanghai Jiaotong University, 2023 , 57(3) : 345 -353 . DOI: 10.16183/j.cnki.jsjtu.2021.443

References

[1] 胡兵, 杨明, 郭林栋, 等. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报, 2019, 53(2): 203-208.
[1] HU Bing, YANG Ming, GUO Lindong, et al. Global localization for intelligent vehicles using ground SURF[J]. Journal of Shanghai Jiao Tong University, 2019, 53(2): 203-208.
[2] WERLING M, ZIEGLER J, KAMMEL S, et al. Optimal trajectory generation for dynamic street scenarios in a Frenét Frame[C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA: IEEE, 2010: 987-993.
[3] CHEN S T, JIAN Z Q, HUANG Y H, et al. Autonomous driving: Cognitive construction and situation understanding[J]. Science China Information Sciences, 2019, 62(8): 1-27.
[4] MA L, YANG J, ZHANG M. A two-level path planning method for on-road autonomous driving[C]// 2012 Second International Conference on Intelligent System Design and Engineering Application. Sanya, China: IEEE, 2012: 661-664.
[5] MAEKAWA T, NODA T, TAMURA S, et al. Curvature continuous path generation for autonomous vehicle using B-spline curves[J]. Computer-Aided Design, 2010, 42(4): 350-359.
[6] PIVTORAIKO M, KNEPPER R A, KELLY A. Differentially constrained mobile robot motion planning in state lattices[J]. Journal of Field Robotics, 2009, 26(3): 308-333.
[7] DOLGOV D, THRUN S, MONTEMERLO M, et al. Path planning for autonomous vehicles in unknown semi-structured environments[J]. The International Journal of Robotics Research, 2010, 29(5): 485-501.
[8] KUWATA Y, FIORE G A, TEO J, et al. Motion planning for urban driving using RRT[C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008: 1681-1686.
[9] BANZHAF H, NIENHüSER D, KNOOP S, et al. The future of parking: A survey on automated valet parking with an outlook on high density parking[C]// 2017 IEEE Intelligent Vehicles Symposium. Los Angeles, CA, USA: IEEE, 2017: 1827-1834.
[10] 王旭东, 王春香, 杨明, 等. 一种基于环视相机的自动泊车方法[J]. 上海交通大学学报, 2013, 47(7): 1077-1081.
[10] WANG Xudong, WANG Chunxiang, YANG Ming, et al. Automatic parking based on bird’s eye view cameras[J]. Journal of Shanghai Jiao Tong University, 2013, 47(7): 1077-1081.
[11] LIN L T, ZHU J J. Path planning for autonomous car parking[C]// Proceedings of ASME 2018 Dynamic Systems and Control Conference. Atlanta, Georgia, USA: ASME, 2018: 1-10.
[12] MOON J, BAE I, CHA J G, et al. A trajectory planning method based on forward path generation and backward tracking algorithm for Automatic Parking Systems[C]// 17th International IEEE Conference on Intelligent Transportation Systems. Qingdao, China: IEEE, 2014: 719-724.
[13] 齐尧, 徐友春, 李华, 等. 一种基于改进混合A*的智能车路径规划算法[J]. 军事交通学院学报, 2018, 20(8): 85-90.
[13] QI Yao, XU Youchun, LI Hua, et al. Hybrid A* algorithm-based path planning for intelligent vehicle[J]. Journal of Military Transportation University, 2018, 20(8): 85-90.
[14] 陈鑫鹏, 徐彪, 胡满江, 等. 一种基于等步长分层拓展的混合A*路径规划方法[J]. 控制与信息技术, 2021(1): 17-22.
[14] CHEN Xinpeng, XU Biao, HU Manjiang, et al. A hybrid-A* path planning method based on equal step hierarchical expansion[J]. Control and Information Technology, 2021(1): 17-22.
[15] ZHANG S Y, CHEN Y, CHEN S T, et al. Hybrid A*-based curvature continuous path planning in complex dynamic environments[C]// 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE, 2019: 1468-1474.
[16] MIZUNO N, OHNO K, HAMADA R, et al. Enhanced path smoothing based on conjugate gradient descent for firefighting robots in petrochemical complexes[J]. Advanced Robotics, 2019, 33(14): 687-698.
[17] ZHANG X J, LINIGER A, SAKAI A, et al. Autonomous parking using optimization-based collision avoidance[C]// 2018 IEEE Conference on Decision and Control. Miami, FL, USA: IEEE, 2018: 4327-4332.
Outlines

/