New Type Power System and the Integrated Energy

Improved Magnetic Circuit-Motion Coupled Model and Fast Simulation of Direct-Acting Electromechanical Motion Device

Expand
  • 1. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, Liaoning, China
    2. INTESIM (Dalian) Co., Ltd., Dalian 116023, Liaoning, China
    3. College of Arts and Information Engineering, Dalian Polytechnic University, Dalian 116400, Liaoning, China

Received date: 2022-06-27

  Revised date: 2022-08-30

  Accepted date: 2022-09-08

  Online published: 2023-03-23

Abstract

The rapid simulation of the dynamic performance of electromechanical devices such as solenoid valves and relays is important for product development and design. A magnetic circuit model of the non-saturated direct-acting electromechanical motion device is improved, and then coupled with the motion equation of the mechanism to realize the rapid simulation of the electromechanical motion device. In contrast to the ideal magnetic resistance in the conventional magnetic circuit model, the non-saturated total magnetic resistance is expressed by a cubic polynomial of the movement displacement of mechanism. The four undetermined coefficients of the polynomial are calibrated by the simulation values of static magnetic force and inductance at the upper and lower motion limits. The improved magnetic circuit model can more accurately predict the changes of magnetic attraction force and inductance with the motion displacement. Furthermore, coupled with the motion equation of the electromechanical motion device, the improved model establishes an improved magnetic circuit-motion coupled model and realizes fast second-level simulation of an electromagnetic brake and valve in the Simulink system, which can greatly reduce the finite element simulation time while maintaining simulation accuracy.

Cite this article

JIANG Peng, GUAN Zhenqun, ZHAO Guozhong, ZHANG Qun, QIN Zhiqiang . Improved Magnetic Circuit-Motion Coupled Model and Fast Simulation of Direct-Acting Electromechanical Motion Device[J]. Journal of Shanghai Jiaotong University, 2024 , 58(1) : 102 -110 . DOI: 10.16183/j.cnki.jsjtu.2022.243

References

[1] 刘正兴, 杨耀文, 蔡炜, 等. 机电耦合有限单元及动力方程[J]. 上海交通大学学报, 1997, 31(7): 54-59.
[1] LIU Zhengxing, YANG Yaowen, CAI Wei, et al. Electromechanical coupled finite element and dynamic equations[J]. Journal of Shanghai Jiao Tong University, 1997, 31(7): 54-59.
[2] 翟国富, 王其亚, 程贤科, 等. 电磁继电器动态特性快速算法及其在优化中的应用[J]. 中国电机工程学报, 2010, 30(12): 106-110.
[2] ZHAI Guofu, WANG Qiya, CHENG Xianke, et al. Fast algorithm for dynamic characteristics of electromagnetic relay and its application in optimization[J]. Proceedings of the CSEE, 2010, 30(12): 106-110.
[3] 翟国富, 崔行磊, 杨文英. 电磁继电器产品及研究技术发展综述[J]. 电器与能效管理技术, 2016(2): 1-8.
[3] ZHAI Guofu, CUI Xinglei, YANG Wenying. Overview for development of research and technologies of electromagnetic relays[J]. Low Voltage Apparatus, 2016(2): 1-8.
[4] 杨文英, 刘洋, 郭久威, 等. 电器多目标优化方法综述[J]. 电器与能效管理技术, 2018(18): 1-7.
[4] YANG Wenying, LIU Yang, GUO Jiuwei, et al. Overview on multi-objective optimization methods of electric apparatus[J]. Low Voltage Apparatus, 2018(18): 1-7.
[5] 张敏敏, 陈俐, 霍易, 等. 高速电磁开关阀非线性模型简化与验证[J]. 上海交通大学学报, 2010, 44(7): 1005-1009.
[5] ZHANG Minmin, CHEN Li, HUO Yi, et al. Model reduction of high speed on-off solenoid valve and experimental validation[J]. Journal of Shanghai Jiao Tong University, 2010, 44(7): 1005-1009.
[6] MOALLEM M, DAWSON G E. An improved magnetic equivalent circuit method for predicting the characteristics of highly saturated electromagnetic devices[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3632-3635.
[7] SUDHOFF S D, KUHN B T, CORZINE K A, et al. Magnetic equivalent circuit modeling of induction motors[J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 259-270.
[8] NEDJAR B, VIDO L, HLIOUI S, et al. Hybrid coupling: Magnetic equivalent circuit coupled to finite element analysis for PMSM electromagnetic modeling[C]// 2012 IEEE International Symposium on Industrial Electronics. Hangzhou, China: IEEE, 2012: 858-862.
[9] PENG W, GYSELINCK J. Combined magnetic-equivalent-circuit and finite-element modelling of switched reluctance machines[C]// 2016 IEEE International Energy Conference. Leuven, UK: IEEE, 2016: 1-6.
[10] CHEN Y, LIANG S Y, LI W F, et al. Faults and diagnosis methods of permanent magnet synchronous motors: A review[J]. Applied Sciences, 2019, 9(10): 2116.
[11] 孙怀懿, 汤龙飞. 考虑漏磁和铁心磁场分布的磁路仿真[J]. 福州大学学报(自然科学版), 2021, 49(6): 790-796.
[11] SUN Huaiyi, TANG Longfei. Simulation considering magnetic flux leakage and core magnetic field distribution[J]. Journal of Fuzhou University(Natural Science Edition), 2021, 49(6): 790-796.
[12] 叶品州, 李红伟, 于文涛, 等. 考虑材料非线性及涡流影响的径向电磁轴承等效磁路建模[J]. 电工技术学报, 2020, 35(9): 1858-1867.
[12] YE Pinzhou, LI Hongwei, YU Wentao, et al. Equivalent magnetic circuit modeling of radial active magnetic bearing considering material nonlinearity and eddy current effects[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1858-1867.
[13] DELALE A, ALBERT L, GERBAUD L, et al. Automatic generation of sizing models for the optimization of electromagnetic devices using reluctance networks[J]. IEEE Transactions on Magnetics, 2004, 40(2): 830-833.
[14] DU PELOUX B, GERBAUD L, WURTZ F, et al. Automatic generation of sizing static models based on reluctance networks for the optimization of electromagnetic devices[J]. IEEE Transactions on Magnetics, 2006, 42(4): 715-718.
[15] COUTEL C, WURTZ F, BIGEON J, et al. Constrained optimisation of a linear actuator: comparison of two methods to deal with implicit parameters in the analytical model[C]// IEEE International Electric Machines and Drives Conference. Seattle, USA: IEEE, 1999: 625-627.
[16] NAKAMURA K, ICHINOKURA O. Dynamic simulation of PM motor drive system based on reluctance network analysis[C]// 2008 13th International Power Electronics and Motion Control Conference. Poznan, Poland: IEEE, 2008: 758-762.
[17] NAKAMURA K, FUJIO S, ICHINOKURA O. A method for calculating iron loss of an SR motor based on reluctance network analysis and comparison of symmetric and asymmetric excitation[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3440-3442.
[18] 曾德鹏, 徐永向, 邹继斌. 一种针对集中绕组多单元永磁同步电动机的电感解析计算方法[J]. 上海交通大学学报, 2015, 49(11): 1706-1710.
[18] ZENG Depeng, XU Yongxiang, ZOU Jibin. An analytical calculation model for inductances of multi-unit PMSM with concentrated windings[J]. Journal of Shanghai Jiao Tong University, 2015, 49(11): 1706-1710.
[19] CHILLET C, VOYANT J Y. Design-oriented analytical study of a linear electromagnetic actuator by means of a reluctance network[J]. IEEE Transactions on Magnetics, 2001, 37(4): 3004-3011.
[20] CHOI H S, KIM D H, PARK I H, et al. A new design technique of magnetic systems using space mapping algorithm[J]. IEEE Transactions on Magnetics, 2001, 37(5): 3627-3630.
[21] ENCICA L, MAKAROVIC J, LOMONOVA E A, et al. Space mapping optimization of a cylindrical voice coil actuator[J]. IEEE Transactions on Industry Applications, 2006, 42(6): 1437-1444.
[22] ECHEVERRíA D, LAHAYE D, ENCICA L, et al. Manifold-mapping optimization applied to linear actuator design[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1183-1186.
[23] ENCICA L, PAULIDES J J H, LOMONOVA E A, et al. Aggressive output space-mapping optimization for electromagnetic actuators[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1106-1109.
[24] YANG W Y, LIU P, WANG Y Q, et al. Research on dynamic characteristics optimization via analytical modeling for typical rotational electromagnetic system[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
[25] FITZGERALD A E, KINGSLEY C, UMANS S D. Electric machinery[M]. 6th ed. Boston: McGraw-Hill, 2003.
Outlines

/