New Type Power System and the Integrated Energy

Green Energy Trading in Distribution Network Considering Credit Value

Expand
  • 1. Hainan Power Grid Co., Ltd., Haikou 570100, China
    2. Key Laboratory of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-04-27

  Revised date: 2022-09-06

  Accepted date: 2022-09-22

  Online published: 2023-03-15

Abstract

Developing distributed renewable energy is vital to energy system transformation, while organizing market trading will promote the production and consumption of distributed renewable energy. However, the uncertainty of renewable energy output causes deviations during market delivery, which threats the security of distribution system operation. It is still difficult for existing market-based trading mechanisms to motivate market players to reduce the deviations. Therefore, this paper gives guidance to the honest delivery behaviors of distributed green energy producers by quantifying credit costs. Considering the strategic bidding behaviors of distributed green energy producers, it establishes a market model taking the credit costs into account. Then, it proposed an iterative algorithm based on the optimal response theory to calculate the Nash equilibria of the green energy market. The results of the case study show that the market mechanism proposed can give guidance to the integrity behavior of green energy producers in an incentive-compatible way, reducing the delivery deviation while improving social welfare.

Cite this article

WU Qing, JIA Qiangang, YAN Zheng, ZHONG Zhun, GUO Song, LI Zhiyong . Green Energy Trading in Distribution Network Considering Credit Value[J]. Journal of Shanghai Jiaotong University, 2024 , 58(1) : 11 -18 . DOI: 10.16183/j.cnki.jsjtu.2022.130

References

[1] 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2023-01-10]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
[1] Xinhua News Agency. Outline of the 14th Five-Year Plan (2021—2025) for national economic and social development and Vision 2035 of the People’s Republic of China[EB/OL]. (2021-03-13) [2023-01-10]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
[2] 王栋, 李达, 冯景丽, 等. 考虑绿色属性的多微网间电能可信自治交易方法[J]. 电力系统自动化, 2022, 46(23): 1-10.
[2] WANG Dong, LI Da, FENG Jingli, et al. Trustworthy and autonomous electricity trading method among multiple microgrids considering green property[J]. Automation of Electric Power Systems, 2022, 46(23): 1-10.
[3] 张巍, 卢骧. 点对点交易下储能聚合商共享自营多模式交易模型[J]. 电力系统自动化, 2022, 46(2): 15-23.
[3] ZHANG Wei, LU Xiang. Sharing and self-operating multi-mode trading model of energy storage aggregators with peer-to-peer trade[J]. Automation of Electric Power Systems, 2022, 46(2): 15-23.
[4] 吴锦领, 楼平, 管敏渊, 等. 基于非对称纳什谈判的多微网电能共享运行优化策略[J]. 电网技术, 2022, 46(7): 2711-2723.
[4] WU Jinling, LOU Ping, GUAN Minyuan, et al. Operation optimization strategy of multi-microgrids energy sharing based on asymmetric Nash bargaining[J]. Power System Technology, 2022, 46(7): 2711-2723.
[5] 胡钰, 李华强, 李山山, 等. 基于区块链的产消用户端对端电能交易方法[J]. 电力自动化设备, 2022, 42(1): 101-108.
[5] HU Yu, LI Huaqiang, LI Shanshan, et al. Peer-to-peer power trading method for proconsumers based on blockchain[J]. Electric Power Automation Equipment, 2022, 42(1): 101-108.
[6] 马腾, 刘洋, 许立雄, 等. 基于区块链的配电侧多微电网电能去中心化交易模型[J]. 电网技术, 2021, 45(6): 2237-2247.
[6] MA Teng, LIU Yang, XU Lixiong, et al. Energy decentralized transaction model of multi-microgrid in distribution side based on blockchain[J]. Power System Technology, 2021, 45(6): 2237-2247.
[7] 赵银波, 高红均, 王仲, 等. 考虑用户电能替代的商业园区运营商多能交易博弈优化决策[J]. 电网技术, 2021, 45(4): 1320-1331.
[7] ZHAO Yinbo, GAO Hongjun, WANG Zhong, et al. Optimal decision of multi-energy trading game for commercial park operators considering user-side electricity substitution[J]. Power System Technology, 2021, 45(4): 1320-1331.
[8] 赵天辉, 王建学, 陈洋. 面向综合能源交易的新型城镇分层市场架构和出清算法[J]. 电力系统自动化, 2021, 45(4): 73-80.
[8] ZHAO Tianhui, WANG Jianxue, CHEN Yang. Hierarchical market structure and clearing algorithm for integrated energy trading of new-type towns[J]. Automation of Electric Power Systems, 2021, 45(4): 73-80.
[9] 王丹, 刘博, 贾宏杰, 等. 基于强化学习的产消用户端对端电能交易决策[J]. 电力系统自动化, 2021, 45(3): 139-147.
[9] WANG Dan, LIU Bo, JIA Hongjie, et al. Peer-to-peer energy transaction decision of prosumers based on reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(3): 139-147.
[10] 单俊嘉, 胡俊杰, 吴界辰. 面向虚拟电厂能量管理的点对点市场交易机制与模型[J]. 电网技术, 2020, 44(9): 3401-3408.
[10] SHAN Junjia, HU Junjie, WU Jiechen. Peer-to-peer market trading mechanism and model for virtual power plant energy management[J]. Power System Technology, 2020, 44(9): 3401-3408.
[11] 李幸芝, 韩蓓, 李国杰, 等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993.
[11] LI Xingzhi, HAN Bei, LI Guojie, et al. Challenges of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993.
[12] 李林晏, 韩爽, 乔延辉, 等. 面向高比例新能源并网场景的风光-电动车协同调度方法[J]. 上海交通大学学报, 2022, 56(5): 554-563.
[12] LI Linyan, HAN Shuang, QIAO Yanhui, et al. A wind-solar-electric vehicles coordination scheduling method for high proportion new energy grid-connected scenarios[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 554-563.
[13] 范帅, 危怡涵, 何光宇, 等. 面向新型电力系统的需求响应机制探讨[J]. 电力系统自动化, 2022, 46(7): 1-12.
[13] FAN Shuai, WEI Yihan, HE Guangyu, et al. Discussion on demand response mechanism for new power systems[J]. Automation of Electric Power Systems, 2022, 46(7): 1-12.
[14] 路尧, 胡健, 张晓杰, 等. 基于DPoA共识机制的分布式电力交易信用激励[J]. 电力自动化设备, 2022, 42(1): 116-123.
[14] LU Yao, HU Jian, ZHANG Xiaojie, et al. Credit incentives of distributed power transaction based on DPoA consensus mechanism[J]. Electric Power Automation Equipment, 2022, 42(1): 116-123.
[15] MORSTYN T, MCCULLOCH M D. Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[J]. IEEE Transactions on Power Systems, 2019, 34(5): 4005-4014.
[16] WANG T H, GUO J, AI S P, et al. RBT: A distributed reputation system for blockchain-based peer-to-peer energy trading with fairness consideration[J]. Applied Energy, 2021, 295: 117056.
[17] 刘俊, 王超, 陈津莼, 等. 基于博弈论的城镇能源互联网多市场主体收益模型[J]. 电力系统自动化, 2019, 43(14): 90-96.
[17] LIU Jun, WANG Chao, CHEN Jinchun, et al. Game theory based profit model for multiple market entities of urban energy Internet[J]. Automation of Electric Power Systems, 2019, 43(14): 90-96.
[18] CHEN S J, ZHANG L, YAN Z, et al. A distributed and robust security-constrained economic dispatch algorithm based on blockchain[J]. IEEE Transactions on Power Systems, 2022, 37(1): 691-700.
[19] CHEN S J, MI H N, PING J, et al. A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading[J]. Nature Energy, 2022, 7(6): 495-502.
[20] PING J, YAN Z, CHEN S J. A privacy-preserving blockchain-based method to optimize energy trading[J]. IEEE Transactions on Smart Grid, 2023, 14(2): 1148-1157.
[21] MAZZI N, KAZEMPOUR J, PINSON P. Price-taker offering strategy in electricity pay-as-bid markets[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2175-2183.
[22] BLUMSACK S. Basic economics of power generation, transmission and distribution[DB/OL]. (2022-01-01) [2023-06-26]. https://www.e-education.psu.edu/eme801/node/530.
[23] CUNNINGHAM L B, BALDICK R, BAUGHMAN M L. An empirical study of applied game theory: Transmission constrained Cournot behavior[J]. IEEE Transactions on Power Systems, 2002, 17(1): 166-172.
[24] 袁智强, 侯志俭, 宋依群, 等. 考虑输电约束古诺模型的均衡分析[J]. 中国电机工程学报, 2004, 24(6): 73-79.
[24] YUAN Zhiqiang, HOU Zhijian, SONG Yiqun, et al. Analysis of equilibrium of cournot model with considering transmission constraints[J]. Proceedings of the CSEE, 2004, 24(6): 73-79.
[25] SONG Y, ZHENG Y, LIU T, et al. A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation[J]. IEEE Transactions on Power Systems, 2020, 35(1): 496-507.
[26] LI T, SHAHIDEHPOUR M. Strategic bidding of transmission-constrained GENCOs with incomplete information[J]. IEEE Transactions on Power Systems, 2005, 20(1): 437-447.
[27] JIA Q G, LI Y Y, YAN Z, et al. Reactive power market design for distribution networks with high photovoltaic penetration[J]. IEEE Transactions on Smart Grid, 2023, 14(2): 1642-1651.
[28] CHEN S J, XU C K, YAN Z, et al. Accommodating strategic players in distributed algorithms for power dispatch problems[J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12594-12603.
Outlines

/