New Type Power System and the Integrated Energy

Stepwise Inertial Intelligent Control of Wind Power for Frequency Regulation Based on Stacked Denoising Autoencoder and Deep Neural Network

Expand
  • 1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
    2. School of Electrical Engineering, Southeast University, Nanjing 210096, China
    3. National Key Laboratory for Smart Grid Protection and Operation Control, State Grid Electric Power Research Institute Co., Ltd., Nanjing 211106, China

Received date: 2022-05-13

  Revised date: 2022-09-08

  Accepted date: 2022-11-04

  Online published: 2023-03-10

Abstract

Stepwise inertial control (SIC) provides a step-increase of power after load fluctuation, which can effectively prevent system frequency decline and ensure the safety of grid frequency. However, in the power recovery stage, secondary frequency drop (SFD) is easy to occur. Therefore, it is necessary to optimize SIC to obtain a better frequency regulation effect. The traditional method has the disadvantages of high calculation dimension and long consuming time, which is difficult to meet the requirements of providing the optimal control effect in different scenarios. In order to realize the optimal stepwise inertial fast control of wind power frequency regulation in load disturbance events, this paper introduces the deep learning algorithm and proposes a stepwise inertial intelligent control of wind power for frequency regulation based on stacked denoising autoencoder(SDAE) and deep neural network(DNN). First, sparrow search algorithm (SSA) is used to obtain the optimal parameters, and SDAE is used to extract the data features efficiently. Then, DNN is used to learn the data features, and the accelerated adaptive moment estimation is introduced to optimize the network parameters to improve the global optimal parameters of the network. Finally, the stepwise inertial online control of wind power frequency regulation after disturbance event is realized according to SDAE-DNN. The simulation analysis is conducted for a single wind turbine and a wind farm in the IEEE 30-bus test system. Compared with the results obtained by the traditional method, shallow BP neural network and original DNN network, it is found that the proposed network structure has a better prediction accuracy and generalization ability, and the proposed method can achieve a great effect of stepwise inertia frequency regulation.

Cite this article

WANG Yalun, ZHOU Tao, CHEN Zhong, WANG Yi, QUAN Hao . Stepwise Inertial Intelligent Control of Wind Power for Frequency Regulation Based on Stacked Denoising Autoencoder and Deep Neural Network[J]. Journal of Shanghai Jiaotong University, 2023 , 57(11) : 1477 -1491 . DOI: 10.16183/j.cnki.jsjtu.2022.157

References

[1] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
[1] ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[2] 国家能源局. 国家能源局: 我国可再生能源实现跨跃式发展—我国可再生能源发展有关情况介绍[J]. 中国电业, 2021(4): 6-9.
[2] National Energy Administration. National energy administration: China’s renewable energy realizes leap-forward development—Introduction of China’s renewable energy development[J]. China Electric Power, 2021(4): 6-9.
[3] 鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述[J]. 中国电力, 2018, 51(1): 51-58.
[3] LU Zongxiang, TANG Haiyan, QIAO Ying, et al. The impact of power electronics interfaces on power system frequency control: A review[J]. Electric Power, 2018, 51(1): 51-58.
[4] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716.
[4] FU Yuan, WANG Yi, ZHANG Xiangyu, et al. Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716.
[5] 李军徽, 冯喜超, 严干贵, 等. 高风电渗透率下的电力系统调频研究综述[J]. 电力系统保护与控制, 2018, 46(2): 163-170.
[5] LI Junhui, FENG Xichao, YAN Gangui, et al. Survey on frequency regulation technology in high wind penetration power system[J]. Power System Protection & Control, 2018, 46(2): 163-170.
[6] 程志平, 张晗念, 徐亚利, 等. 风力发电调频策略研究现状分析[J]. 微电机, 2017, 50(10): 69-75.
[6] CHENG Zhiping, ZHANG Hannian, XU Yali, et al. Analysis on frequency control of wind turbines[J]. Micromotors, 2017, 50(10): 69-75.
[7] YANG D J, LEE J, KANG Y C. Stepwise inertial control of a wind turbine generator to minimize a second frequency dip[J]. Journal of International Council on Electrical Engineering, 2016, 6(1): 153-159.
[8] 尹远, 卢继平, 刘钢, 等. 基于DFIG机组转子动能的风电场有功功率优化分配方法[J]. 电力系统保护与控制, 2012, 40(17): 127-132.
[8] YIN Yuan, LU Jiping, LIU Gang, et al. Active power distribution optimization of wind farm based on rotational kinetic energy of DFIG[J]. Power System Protection & Control, 2012, 40(17): 127-132.
[9] ACKERMANN T, S?DER L. Wind power in power systems: An introduction[M] //Wind power in power systems. Chichester, UK: John Wiley & Sons, Ltd., 2005: 25-51.
[10] 刘瑞. 双馈风机参与系统调频的二次跌落优化控制方法研究[D]. 北京: 华北电力大学, 2019.
[10] LIU Rui. Research on secondary drop optimized control method based on primary frequency control of doubly-fed wind turbines[D]. Beijing: North China Electric Power University, 2019.
[11] WU Z P, GAO W Z, GAO T Q, et al. State-of-the-art review on frequency response of wind power plants in power systems[J]. Journal of Modern Power Systems & Clean Energy, 2018, 6(1): 1-16.
[12] HAFIZ F, ABDENNOUR A. Optimal use of kinetic energy for the inertial support from variable speed wind turbines[J]. Renewable Energy, 2015, 80: 629-643.
[13] KANG M, KIM K, MULJADI E, et al. Frequency control support of a doubly-fed induction generator based on the torque limit[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4575-4583.
[14] BAO W Y, DING L, LIU Z F, et al. Analytically derived fixed termination time for stepwise inertial control of wind turbines—Part I: Analytical derivation[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106120.
[15] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803.
[15] ZHANG Xu, CHEN Yunlong, YUE Shuai, et al. Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology, 2018, 42(6): 1793-1803.
[16] 刘洪波, 彭晓宇, 张崇, 等. 风电参与电力系统调频控制策略综述[J]. 电力自动化设备, 2021, 41(11): 81-92.
[16] LIU Hongbo, PENG Xiaoyu, ZHANG Chong, et al. Overview of wind power participating in frequency regulation control strategy for power system[J]. Electric Power Automation Equipment, 2021, 41(11): 81-92.
[17] 张怡, 张恒旭, 李常刚, 等. 深度学习在电力系统频率分析与控制中的应用综述[J]. 中国电机工程学报, 2021, 41(10): 3392-3406.
[17] ZHANG Yi, ZHANG Hengxu, LI Changgang, et al. Review on deep learning applications in power system frequency analysis and control[J]. Proceedings of the CSEE, 2021, 41(10): 3392-3406.
[18] 巩伟峥, 许凌, 姚寅. 计及风速分布与机组惯量转化不确定性的风电场可用惯量估计[J]. 上海交通大学学报, 2021, 55 (Sup.2): 51-59.
[18] GONG Weizheng, XU Ling, YAO Yin. Estimation of wind farm available inertia considering uncertainty of wind speed distribution and unit inertia transformation[J]. Journal of Shanghai Jiao Tong University, 2021, 55 (Sup.2): 51-59.
[19] 孙正龙, 李浩博, 刘铖, 等. 含虚拟惯量的双馈风电机组扭振阻尼特性分析与抑制方法研究[J]. 电网技术, 2021, 45(12): 4671-4683.
[19] SUN Zhenglong, LI Haobo, LIU Cheng, et al. Torsional oscillation damping characteristics and suppression methods of doubly-fed induction generator with virtual inertia[J]. Power System Technology, 2021, 45(12): 4671-4683.
[20] 乔颖, 郭晓茜, 鲁宗相, 等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815.
[20] QIAO Ying, GUO Xiaoqian, LU Zongxiang, et al. Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power System Technology, 2020, 44(3): 807-815.
[21] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720-729.
[22] ZHOU P, CHEN G, WANG M W, et al. Sediment classification of acoustic backscatter image based on stacked denoising autoencoder and modified extreme learning machine[J]. Remote Sensing, 2020, 12(22): 3762.
[23] XU K L, DARVE E. Solving inverse problems in stochastic models using deep neural networks and adversarial training[J]. Computer Methods in Applied Mechanics & Engineering, 2021, 384: 113976.
[24] XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[25] DOZAT T. Incorporating nesterov momentum into Adam[C]// International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2016.
[26] MA H, SHAHIDEHPOUR S M, MARWALI M K C. Transmission constrained unit commitment based on Benders decomposition[C]// Proceedings of the 1997 American Control Conference. Albuquerque, USA: IEEE, 1997: 2263-2267.
[27] 文云峰, 赵荣臻, 肖友强, 等. 基于多层极限学习机的电力系统频率安全评估方法[J]. 电力系统自动化, 2019, 43(1): 133-140.
[27] WEN Yunfeng, ZHAO Rongzhen, XIAO Youqiang, et al. Frequency safety assessment of power system based on multi-layer extreme learning machine[J]. Automation of Electric Power Systems, 2019, 43(1): 133-140.
[28] 刘陈续, 于桂兰. 基于神经网络的层状周期结构能量传输谱预测[J]. 上海交通大学学报, 2021, 55(1): 88-95.
[28] LIU Chenxu, YU Guilan. Prediction of energy transmission spectrum of layered periodic structures by neural networks[J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 88-95.
[29] 王同森, 程雪坤. 计及转速限值的双馈风机变下垂系数控制策略[J]. 电力系统保护与控制, 2021, 49(9): 29-36.
[29] WANG Tongsen, CHENG Xuekun. Variable droop coefficient control strategy of a DFIG considering rotor speed limit[J]. Power System Protection & Control, 2021, 49(9): 29-36.
[30] 王旭斌, 杜文娟, 王海风. 考虑锁相环动态的直驱风电机组虚拟惯性控制对电力系统小干扰稳定性影响[J]. 中国电机工程学报, 2018, 38(8): 2239-2252.
[30] WANG Xubin, DU Wenjuan, WANG Haifeng. Small-signal stability of power systems as affected by D-PMSG virtual inertia control considering PLL dynamics[J]. Proceedings of the CSEE, 2018, 38(8): 2239-2252.
Outlines

/