New Type Power System and the Integrated Energy

Optimal Planning of Power Systems with Flexible Resources for High Penetrated Renewable Energy Accommodation

Expand
  • College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Received date: 2022-07-12

  Revised date: 2022-07-27

  Accepted date: 2022-08-16

  Online published: 2023-03-11

Abstract

High penetrated renewable energy has brought great challenges to the flexibility of the power system due to its volatility and intermittency. To improve the capacity of renewable energy accommodation, the flexibility reformation of thermal power units, the construction of gas-fired units, and the electrical energy storage installation are considered as effective solutions. Thus, an optimization model for power system planning scheme considering multi-type flexible resources with their different output characteristics is established. The simulation results on a modified IEEE 24-bus power system and 12-node natural gas system demonstrate the effectiveness of the proposed model. In addition, the applicability of different flexible resource planning schemes is comprehensively evaluated from the perspectives of economy, accommodation capacity, and carbon reduction, so as to meet the different planning goals.

Cite this article

GUO Yongtao, XIANG Yue, LIU Junyong . Optimal Planning of Power Systems with Flexible Resources for High Penetrated Renewable Energy Accommodation[J]. Journal of Shanghai Jiaotong University, 2023 , 57(9) : 1146 -1155 . DOI: 10.16183/j.cnki.jsjtu.2022.269

References

[1] 国家能源局. 2021年四季度全国新能源电力消纳评估分析[DB/OL].(2022-03-15) [2022-07-08]. http://www.chinapower.com.cn/zx/hyfx/20220315/138719.html.
[1] National Energy Administration. Evaluation and analysis of national new energy power accommodation for four quarters in 2021[DB/OL]. (2022-03-15) [2022-07-08]. http://www.chinapower.com.cn/zx/hyfx/20220315/138719.html.
[2] 彭光博, 向月, 陈文溆乐, 等. “双碳” 目标下电力系统风电装机与投资发展动力学推演及分析[J]. 电力自动化设备, 2022, 42(11): 70-77.
[2] PENG Guangbo, XIANG Yue, CHEN Wenxule, et al. Kinetic deduction and analysis of installed capacity and investment development for wind power in power system under “dual carbon” target[J]. Electric Power Automation Equipment, 2022, 42(11): 70-77.
[3] 潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景[J]. 电力建设, 2020, 41(9): 58-68.
[3] PAN Ersheng, TIAN Xueqin, XU Tong, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China[J]. Electric Power Construction, 2020, 41(9): 58-68.
[4] ZHAO Y L, LIU M, WANG C Y, et al. Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes[J]. Applied Energy, 2018, 228: 2375-2386.
[5] 李星梅, 钟志鸣, 阎洁. 大规模风电接入下的火电机组灵活性改造规划[J]. 电力系统自动化, 2019, 43(3): 51-57.
[5] LI Xingmei, ZHONG Zhiming, YAN Jie. Flexibility reformation planning of thermal power units with large-scale integration of wind power[J]. Automation of Electric Power Systems, 2019, 43(3): 51-57.
[6] 徐浩, 李华强. 火电机组灵活性改造规划及运行综合随机优化模型[J]. 电网技术, 2020, 44(12): 4626-4635.
[6] XU Hao, LI Huaqiang. Comprehensive stochastic optimization model for flexible transformation planning and operation of thermal power units[J]. Power System Technology, 2020, 44(12): 4626-4635.
[7] 马龙飞, 吴耀武, 梁彦杰, 等. 计及火电机组灵活性改造的电源扩展弱鲁棒规划[J]. 电力系统自动化, 2020, 44(11): 102-110.
[7] MA Longfei, WU Yaowu, LIANG Yanjie, et al. Light robust planning for generation expansion considering flexibility reformation of thermal power unit[J]. Automation of Electric Power Systems, 2020, 44(11): 102-110.
[8] 徐昊亮, 靳攀润, 姜继恒, 等. 基于随机生产模拟的火电灵活性改造容量规划[J]. 全球能源互联网, 2020, 3(4): 393-403.
[8] XU Haoliang, JIN Panrun, JIANG Jiheng, et al. Capacity optimal plan of thermal power flexibility transformation based on probabilistic production simulation[J]. Journal of Global Energy Interconnection, 2020, 3(4): 393-403.
[9] 赵东元, 胡楠, 傅靖, 等. 提升新能源电力系统灵活性的中国实践及发展路径研究[J]. 电力系统保护与控制, 2020, 48(24): 1-8.
[9] ZHAO Dongyuan, HU Nan, FU Jing, et al. Research on the practice and road map of enhancing the flexibility of a new generation power system in China[J]. Power System Protection and Control, 2020, 48(24): 1-8.
[10] GOTTWALT S, G?RTTNER J, SCHMECK H, et al. Modeling and valuation of residential demand flexibility for renewable energy integration[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2565-2574.
[11] ZHANG S X, FANG Y C, ZHANG H, et al. Maximum hosting capacity of photovoltaic generation in SOP-based power distribution network integrated with electric vehicles[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8213-8224.
[12] 高庆忠, 赵琰, 穆昱壮, 等. 高渗透率可再生能源集成电力系统灵活性优化调度[J]. 电网技术, 2020, 44(10): 3761-3768.
[12] GAO Qingzhong, ZHAO Yan, MU Yuzhuang, et al. Flexible optimal dispatching of high permeability renewable energy integrated power system[J]. Power System Technology, 2020, 44(10): 3761-3768.
[13] CHEN J, ZHANG W T, ZHANG Y C, et al. Day-ahead scheduling of distribution level integrated electricity and natural gas system based on fast-ADMM with restart algorithm[J]. IEEE Access, 2018, 6: 17557-17569.
[14] 孙国强, 陈胜, 郑玉平, 等. 计及电-气互联能源系统安全约束的可用输电能力计算[J]. 电力系统自动化, 2015, 39(23): 26-32.
[14] SUN Guoqiang, CHEN Sheng, ZHENG Yuping, et al. Available transfer capability calculation considering electricity and natural gas coupled energy system security constrains[J]. Automation of Electric Power Systems, 2015, 39(23): 26-32.
[15] QIU J, DONG Z Y, ZHAO J H, et al. Multi-stage flexible expansion Co-planning under uncertainties in a combined electricity and gas market[J]. IEEE Transactions on Power Systems, 2015, 30(4): 2119-2129.
[16] 胡源, 别朝红, 李更丰, 等. 天然气网络和电源、电网联合规划的方法研究[J]. 中国电机工程学报, 2017, 37(1): 45-53.
[16] HU Yuan, BIE Zhaohong, LI Gengfeng, et al. Study on the method of joint planning of natural gas network, power supply and power grid[J]. Proceedings of the CSEE, 2017, 37(1): 45-53.
[17] 刘万宇, 李华强, 张弘历, 等. 考虑灵活性供需平衡的输电网扩展规划[J]. 电力系统自动化, 2018, 42(5): 56-63.
[17] LIU Wanyu, LI Huaqiang, ZHANG Hongli, et al. Expansion planning of transmission grid based on coordination of flexible power supply and demand[J]. Automation of Electric Power Systems, 2018, 42(5): 56-63.
[18] 白帆, 陈红坤, 陈磊, 等. 基于确定型评价指标的电力系统调度灵活性研究[J]. 电力系统保护与控制, 2020, 48(10): 52-60.
[18] BAI Fan, CHEN Hongkun, CHEN Lei, et al. Research on dispatching flexibility of power system based on deterministic evaluation index[J]. Power System Protection and Control, 2020, 48(10): 52-60.
Outlines

/