Naval Architecture, Ocean and Civil Engineering

Degaussing Coil Deployment and Degaussing Current Optimization Strategy for Ship Partition Based on Tilted Correlation Screening

Expand
  • 1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Marine Design and Research Institute of China, Shanghai 200011, China

Received date: 2022-10-20

  Revised date: 2022-12-06

  Accepted date: 2023-01-10

  Online published: 2023-03-07

Abstract

In modern ship degaussing systems, degaussing windings are mainly distributed based on the shape of ship bulkhead, which is difficult to ensure the degaussing effect of magnetic induction intensity of unit winding of each degaussing winding. In order to solve this problem, this paper introduces a tilted correlation screening in high-dimensional variable filter, which splits and recombines the original coils, and re-divides the original degaussing sections, so as to improve the degaussing efficiency of each coil. Aiming at the problem of sparse parameter vectors and multiple collinearity in the calculation of degaussing current after winding restructuring, this paper proposes a slant correlation screening and partial ridge regression algorithm. Through simulation, when the threshold is 0.73 and 0.91, the algorithm reduces 10.08% and 17.59% respectively compared with the least square method, while the residual root mean square error decreases by 10.45% and 12.17%. The simulation results show that the degaussing effect is significantly improved after the algorithm is adopted.

Cite this article

TIAN Ye, YU Moduo, HUANG Wentao, TAI Nengling, NIU Lu . Degaussing Coil Deployment and Degaussing Current Optimization Strategy for Ship Partition Based on Tilted Correlation Screening[J]. Journal of Shanghai Jiaotong University, 2024 , 58(7) : 1018 -1026 . DOI: 10.16183/j.cnki.jsjtu.2022.417

References

[1] 夏建超, 徐正喜, 左超, 等. 基于改进型粒子群算法的舰船消磁电流调整方法研究[J]. 船电技术, 2015, 35(4): 18-21.
  XIA Jianchao, XU Zhengxi, ZUO Chao, et al. Adjustment method of ship’s degaussing current based on improved particle swarm algorithm[J]. Marine Electric & Electronic Engineering, 2015, 35(4): 18-21.
[2] 耿攀, 王向军, 王建勋, 等. 舰艇感应磁场补偿多目标优化设计方法研究[J]. 海军工程大学学报, 2020, 32(1): 76-81.
  GENG Pan, WANG Xiangjun, WANG Jianxun, et al. Research on multi-objective optimization design method for ship induced magnetic field compensation[J]. Journal of Naval University of Engineering, 2020, 32(1): 76-81.
[3] 王志飞. 舰船消磁系统综述[J]. 船电技术, 2020, 40(9): 4-7.
  WANG Zhifei. Overview on the ship degaussing system[J]. Marine Electric & Electronic Engineering, 2020, 40(9): 4-7.
[4] 郭成豹, 周炜昶. 舰船消磁绕组磁特征数值计算与验证研究[J]. 兵工学报, 2017, 38(10): 1988-1994.
  GUO Chengbao, ZHOU Weichang. Numerical simulation and verification of magnetic signatures of ship degaussing coils[J]. Acta Armamentarii, 2017, 38(10): 1988-1994.
[5] 唐申生, 周耀忠, 庄清华. 大型舰船分区消磁理论研究[J]. 海军工程大学学报, 2003, 15(1): 80-83.
  TANG Shensheng, ZHOU Yaozhong, ZHUANG Qinghua. The section degaussing theory of capital ships[J]. Journal of Naval University of Engineering, 2003, 15(1): 80-83.
[6] 左超, 耿攀, 陈涛, 等. 基于遗传算法的消磁绕组优化设计[J]. 舰船科学技术, 2015, 32(2): 124-127.
  ZUO Chao, GENG Pan, CHEN Tao, et al. Optimization of degaussing winding design based on genetic algorithm[J]. Ship Science and Technology, 2015, 32(2): 124-127.
[7] KIM E R, KIM G C, SON W D, et al. Optimal degaussing techniques and magnetic measurement system[C]//Proceedings of the 1997 International Conference on Marine Electromagnetic. London, UK: Reduction of a Ship’s Magnetic Field Signatures, 1997: 78-80.
[8] PARQ J H. Magnetometric demagnetization factors for hollow cylinders[J]. Journal of Magnetics, 2017, 22(4): 550-556.
[9] 杨文铁, 庄劲武, 陈盟, 等. 一种虑及频率影响的缩比船模垂向消磁绕组电感计算方法[J]. 海军工程大学学报, 2022, 34(3): 108-112.
  YANG Wentie, ZHUANG Jinwu, CHEN Meng, et al. An inductance calculation method of vertical degaussing windings of a scale ship model considering influence of frequency[J]. Journal of Naval University of Engineering, 2022, 34(3): 108-112.
[10] 王琦, 袁建生, 赵启明. 基于有限元分析的潜艇直流输电线路电感计算[J]. 中国舰船研究, 2018, 13(1): 114-119.
  WANG Qi, YUAN Jiansheng, ZHAO Qiming. Inductance calculation of submarine DC transmission line based on finite element analysis[J]. Chinese Journal of Ship Research, 2018, 13(1): 114-119.
[11] 彭之然, 汪光森, 翟小飞. 电磁轨道发射装置时变电感梯度建模与分析[J]. 电工技术学报, 2020, 35(23): 4843-4851.
  PENG Zhiran, WANG Guangsen, ZHAI Xiaofei. Modeling and analysis of time-varying inductance gradient for electromagnetic rail launcher[J]. Transactions of China Electro Technical Society, 2020, 35(23): 4843-4851.
[12] VISHAL M, SHAIKH A K, NAVDEEP S, et al. Optimization in tri-axial degaussing system design and estimation of degaussing coil current[J]. IEEE Transactions on Magnetics, 2017, 53(4): 1-12.
[13] 范建明, 赵文春, 刘胜道. 基于垂向工作线圈消除大型非对称舰船固定磁性研究[J]. 舰船科学技术, 2022, 44(3): 125-128.
  FAN Jianming, ZHAO Wenchun, LIU Shengdao. Research on eliminating fixed magnetism of large asymmetric ships based on vertical working coil[J]. Ship Science and Technology, 2022, 44(3): 125-128.
[14] 郭成豹, 周炜昶, 杨波. 通过式消磁实验中减小船模剩余纵向固定磁性的研究[J]. 海军工程大学学报, 2020, 32(4): 13-17.
  GUO Chengbao, ZHOU Weichang, YANG Bo. Study of reducing ship models’residual longitudinal permanent magnetic field in overrun deperming experiment[J]. Journal of Naval University of Engineering, 2020, 32(4): 13-17.
[15] MARIUS B. Simulation of a ship’s deperming process using the Jiles-Atherton Model[J]. IEEE Transactions on Magnetics, 2021, 57(6): 1-7.
[16] ANKITA M, FARUK K. Electromagnetic signature reduction of ferromagnetic vessels using machine learning approach[J]. IEEE Transactions on Magnetics, 2019, 55(8): 1-6.
Outlines

/