Journal of Shanghai Jiaotong University >
Web Crippling Capacity of Cold-Formed Stainless Steel SHS and RHS
Received date: 2022-07-25
Revised date: 2022-09-07
Accepted date: 2022-09-16
Online published: 2023-03-03
This paper investigates the ultimate capacities of domestic cold-formed stainless steel square and rectangular hollow sections (SHS and RHS) undergoing web crippling. The finite element (FE) software Abaqus was employed during the investigation. It verifies the validity of FE models against experimental results available in the literature and performs an extensive parametric study comprised of 224 FE analyses to obtain the web crippling capacities of cold-formed stainless steel SHS and RHS, considering various materials, cross-sectional dimensions, bearing lengths and loading conditions in the parametric study. Based on the obtained FE results, the applicability of existing web crippling design provisions to domestic cold-formed stainless steel SHS and RHS is evaluated. The results indicate that the technical code of cold-formed steel structures (exposure draft) cannot be used for the studied cold-formed stainless steel SHS and RHS. On the other hand, it is shown that the American Specification SEI/ASCE 8-22 and proposed direct strength method (DSM) can lead to safe and accurate design predictions. Therefore, the SEI/ASCE 8-22 and DSM can be used to predict the capacities of domestic cold-formed stainless steel SHS and RHS undergoing web crippling.
Key words: stainless steel; cold-formed steel; web crippling; local bearing; design method
ZHAN Kejiang, LI Haiting, WANG Miao, ZHOU Feng, ZHAO Jincheng . Web Crippling Capacity of Cold-Formed Stainless Steel SHS and RHS[J]. Journal of Shanghai Jiaotong University, 2023 , 57(12) : 1619 -1630 . DOI: 10.16183/j.cnki.jsjtu.2022.291
[1] | 王元清, 袁焕鑫, 石永久, 等. 不锈钢结构的应用和研究现状[J]. 钢结构, 2010, 25(2): 1-12. |
[1] | WANG Yuanqing, YUAN Huanxin, SHI Yongjiu, et al. A review of current applications and research of stainless steel structure[J]. Steel Construction, 2010, 25(2): 1-12. |
[2] | 范圣刚, 郑宝锋, 刘美景, 等. 卷边C形截面不锈钢短柱承载力直接强度法[J]. 东南大学学报(自然科学版), 2014, 44(6): 1246-1253. |
[2] | FAN Shenggang, ZHENG Baofeng, LIU Meijing, et al. Direct strength method of capacity of stainless steel lipped C section stub columns[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(6): 1246-1253. |
[3] | 杨璐, 孙亦男, 宁克洋, 等. 热轧不锈钢圆管柱轴心受压构件整体稳定性能试验研究[J]. 钢结构(中英文), 2019, 34(8): 10-16. |
[3] | YANG Lu, SUN Yinan, NING Keyang, et al. Experimental investigation on the overall stability of hot-rolled stainless steel tubular columns under axial compression[J]. Steel Construction (Chinese & English), 2019, 34(8): 10-16. |
[4] | 舒赣平, 徐秀, 顾悦言, 等. 焊接双相型不锈钢工字形受弯构件整体稳定性能研究[J]. 钢结构(中英文), 2021, 36(2): 1-25. |
[4] | SHU Ganping, XU Xiu, GU Yueyan, et al. Study on the lateral-torsional buckling of duplex stainless steel welded I-section flexural members[J]. Steel Construction (Chinese & English), 2021, 36(2): 1-25. |
[5] | 袁焕鑫, 郭鹏, 郭宇, 等. 冷成型不锈钢矩形管截面受弯构件挠度计算方法[J]. 建筑钢结构进展, 2022, 24(5): 51-58. |
[5] | YUAN Huanxin, GUO Peng, GUO Yu, et al. A calculation method for the deflections of cold-formed stainless steel flexural members with rectangular hollow sections[J]. Progress in Steel Building Structures, 2022, 24(5): 51-58. |
[6] | 舒赣平, 郑宝锋, 沈晓明. 不锈钢压弯构件平面内稳定承载力计算方法研究[J]. 工业建筑, 2012, 42(5): 41-44. |
[6] | SHU Ganping, ZHENG Baofeng, SHEN Xiaoming. In-plane stability design method of stainless steel beam-columns[J]. Industrial Construction, 2012, 42(5): 41-44. |
[7] | 杨璐, 宁克洋, 班慧勇, 等. 不锈钢焊接箱形截面压弯构件弯曲屈曲试验研究[J]. 工程力学, 2018, 35(12): 143-150. |
[7] | YANG Lu, NING Keyang, BAN Huiyong, et al. Experimental research on flexural buckling of stainless steel welded box-section beam-columns[J]. Engineering Mechanics, 2018, 35(12): 143-150. |
[8] | 王元清, 关建, 张勇, 等. 不锈钢构件螺栓连接摩擦面抗滑移系数试验[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(5): 769-774. |
[8] | WANG Yuanqing, GUAN Jian, ZHANG Yong, et al. Experimental research on slip factor in bolted connection with stainless steel[J]. Journal of Shenyang Jianzhu University (Natural Science), 2013, 29(5): 769-774. |
[9] | 范圣刚, 周航, 韩云龙, 等. 常温和高温下不锈钢圆柱头栓钉抗剪性能研究[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(6): 562-570. |
[9] | FAN Shenggang, ZHOU Hang, HAN Yunlong, et al. Shear performance of stainless cylindral head steel stud at room and high temperatures[J]. Journal of Tianjin University (Science and Technology), 2022, 55(6): 562-570. |
[10] | 中国工程建设标准化协会. 不锈钢结构技术规程: CECS 410: 2015[S]. 北京: 中国计划出版社, 2015. |
[10] | China Association of Engineering Construction Standardization. Technical specification for stainless steel structures: CECS 410: 2015[S]. Beijing: China Planning Press, 2015. |
[11] | 舒赣平, 王元清, 袁焕鑫, 等. 《不锈钢结构技术规程》的编制及内容简介[J]. 工业建筑, 2015, 45(12): 1-6. |
[11] | SHU Ganping, WANG Yuanqing, YUAN Huanxin, et al. Introduction to the establishment background and content of Techinical Specification for Stainless Steel Structures[J]. Industrial Construction, 2015, 45(12): 1-6. |
[12] | RASMUSSEN K J R. Recent research on stainless steel tubular structures[J]. Journal of Constructional Steel Research, 2000, 54(1): 75-88. |
[13] | YU W W, LABOUBE R A. Cold-formed steel design[M]. 4th ed. New York, USA: John Wiley and Sons, Inc., 2010. |
[14] | 陈绍蕃. 钢结构设计原理[M]. 北京: 科学出版社, 2005. |
[14] | CHEN Shaofan. Principles of steel structure design[M]. Beijing: Science Press, 2005. |
[15] | ZHOU F, YOUNG B. Cold-formed stainless steel sections subjected to web crippling[J]. Journal of Structural Engineering, 2006, 132(1): 134-144. |
[16] | BOCK M, ARRAYAGO I, REAL E, et al. Study of web crippling in ferritic stainless steel cold formed sections[J]. Thin-Walled Structures, 2013, 69(69): 29-44. |
[17] | LI H T, YOUNG B. Web crippling of cold-formed ferritic stainless steel square and rectangular hollow sections[J]. Engineering Structures, 2018, 176: 968-980. |
[18] | GARDNER L. Recent research on stainless steel tubular structures[C]// Proceedings of the 13th International Symposium on Tubular Structures. Hong Kong, China: CRC Press, 2010: 249-256. |
[19] | BOCK M, REAL E. Strength curves for web crippling design of cold-formed stainless steel hat sections[J]. Thin-Walled Structures, 2014, 85: 93-105. |
[20] | TALJA A, SALMI P. Design of stainless steel RHS beams, columns and beam-columns[R]. Finland: Technical Research Centre of Finland, 1995. |
[21] | GARDNER L, TALJA A, BADDOO N R. Structural design of high-strength austenitic stainless steel[J]. Thin-Walled Structures, 2006, 44(5): 517-528. |
[22] | ZHOU F, YOUNG B. Cold-formed high-strength stainless steel tubular sections subjected to web crippling[J]. Journal of Structural Engineering, 2007, 133(3): 368-377. |
[23] | ZHOU F, YOUNG B. Yield line mechanism analysis on web crippling of cold-formed stainless steel tubular sections under two-flange loading[J]. Engineering Structures, 2006, 28(6): 880-892. |
[24] | 周锋, 杨立伟. 考虑单侧翼缘受载腹板屈曲的不锈钢钢管设计[J]. 建筑钢结构进展, 2007, 9(3): 1-11. |
[24] | ZHOU Feng, YANG Liwei. Design of stainless steel tubular sections subjected to web crippling under one-flange loading[J]. Progress in Steel Building Structures, 2007, 9(3): 1-11. |
[25] | 陈希湘, 王鑫涛, 袁员, 等. 不锈钢管局部承压性能试验研究[J]. 广西大学学报(自然科学版), 2016, 41(5): 1330-1341. |
[25] | CHEN Xixiang, WANG Xintao, YUAN Yuan, et al. Experimental investigation on mechanical behavior of stainless steel tube under local axial compression[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(5): 1330-1341. |
[26] | LI H T, YOUNG B. Cold-formed ferritic stainless steel tubular structural members subjected to concentrated bearing loads[J]. Engineering Structures, 2017, 145: 392-405. |
[27] | CAI Y C, YOUNG B. Web crippling design of lean duplex stainless steel tubular members under interior loading conditions[J]. Engineering Structures, 2021, 238: 112192. |
[28] | CAI Y C, YOUNG B. Design of lean duplex stainless steel tubular sections subjected to concentrated end-bearing loads[J]. Journal of Structural Engineering, 2021, 147(4): 04021009. 1-04021009.18. |
[29] | 中华人民共和国建设部. 冷弯薄壁型钢结构技术规范: GB 50018—2002[S]. 北京: 中国计划出版社, 2002. |
[29] | Ministry of Construction of the People’s Republic of China. Technical code for cold-formed thin-walled steel structure: GB 50018—2002[S]. Beijing: China Planning Press, 2002. |
[30] | European Committee for Standardization. Eurocode 3: Design of steel structures—Part 1-3: General rules-Supplementary rules for cold-formed members and sheeting: EN 1993-1-3[S]. Brussels, Belgium: British Standards Institution, 2006. |
[31] | American Iron and Steel Institute. Specification for the design of cold-formed steel structural members[S]. Washington D.C., USA: American Iron and Steel Institute, 1986. |
[32] | 中华人民共和国住房和城乡建设部. 冷弯型钢结构技术规范: GB 50018—XXXX (征求意见稿)[S]. 武汉: 中南建筑设计院股份有限公司, 2017. |
[32] | Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for cold-formed steel structures: GB 50018—XXXX (Exposure draft)[S]. Wuhan: Central South Architectural Design Institute, 2017. |
[33] | American Iron and Steel Institute. North American specification for the design of cold-formed steel structural members: AISI S100-16[S]. Washington D.C., USA: American Iron and Steel Institute, 2016. |
[34] | Standards Australia. Cold-formed stainless steel structures: AS/NZS 4673[S]. Sydney, Australia: Standards Australia, 2001. |
[35] | American Society of Civil Engineers. Specification for the design of cold-formed stainless steel structural members: SEI/ASCE 8-02[S]. Reston, Virginia, USA: American Society of Civil Engineers, 2002. |
[36] | American Society of Civil Engineers. Specification for the design of cold-formed stainless steel structural members: SEI/ASCE 8-22[S]. Reston, Virginia, USA: American Society of Civil Engineers, 2022. |
[37] | CRUISE R B, GARDNER L. Strength enhancements induced during cold forming of stainless steel sections[J]. Journal of Constructional Steel Research, 2008, 64(11): 1310-1316. |
[38] | GARDNER L, NETHERCOT D A. Experiments on stainless steel hollow sections—Part 1: Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research, 2004, 60(9): 1291-1318. |
[39] | RASMUSSEN K J R. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59(1): 47-61. |
[40] | NATARIO P, SILVESTRE N, CAMOTIM D. Web crippling failure using quasi-static FE models[J]. Thin-Walled Structures, 2014, 84: 34-49. |
[41] | 住房和城乡建设部标准定额研究所. 建筑用不锈钢焊接管材: JG/T 539—2017[S]. 北京: 中华人民共和国住房和城乡建设部, 2017. |
[41] | Research Institute of Standards and Norms Ministry of Housing and Urban-Rural Development. Welded stainless steel tubes for building: JG/T 539—2017[S]. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2017. |
[42] | PRABAKARAN K, SCHUSTER R. Web crippling of cold formed steel sections[R]. Waterloo, Ontario, Canada: University of Waterloo, 1993. |
[43] | ROSSI B, AFSHAN S, GARDNER L. Strength enhancements in cold-formed structural sections — Part II: Predictive models[J]. Journal of Constructional Steel Research, 2013, 83: 189-196. |
/
〈 |
|
〉 |