Aeronautics and Astronautics

Vibration Characteristics of Cylindrical Membrane

Expand
  • 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    2. School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100040, China

Received date: 2022-10-08

  Revised date: 2022-12-18

  Accepted date: 2023-01-06

  Online published: 2023-03-03

Abstract

Based on the principle of D’Alembert, the nonlinear vibration equation of cylindrical membrane is established, and the analysis and experimental verification of it are conducted. The control equation system for cylindrical membrane vibration problems is established, and the equation system according to the physical equations and boundary conditions of thin diaphragms is simplified and solved, the analytical solution of nonlinear vibration frequency of cylindrical membrane is obtained, and the linear analytical solution is verified by finite element simulation, which shows that the error between theoretical calculation and numerical simulation is small, and the applicability of finite element method to the modal analysis of flexible membrane structure is verified. A 3D laser scanning vibration measurement system is used to test the vibration frequency of cylindrical membranes in the air environment. The finite element analysis software is used to obtain the dry mode and wet mode vibration frequencies of cylindrical membranes and extract the additional mass coefficients of air. The results showed that the test results of the vibration in wet mode have a good consistency with the numerical analysis results, and the influence of the additional quality of the ground air on the cylindrical membrane is in the same order of magnitude as its own mass.

Cite this article

HUANG Tao, HE Zeqing, SONG Lin . Vibration Characteristics of Cylindrical Membrane[J]. Journal of Shanghai Jiaotong University, 2024 , 58(4) : 428 -437 . DOI: 10.16183/j.cnki.jsjtu.2022.396

References

[1] 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62.
  HUANG Wanning, ZHANG Xiaojun, LI Zhibin, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62.
[2] 邱慧, 李潇, 樊俊峰, 等. 航天器平面薄膜结构模态分析和试验[J]. 航天器工程, 2017, 26(3): 43-49.
  QIU Hui, LI Xiao, FAN Junfeng, et al. Modal analysis and experiment of spacecraft flat membrane structures[J]. Spacecraft Engineering, 2017, 26(3): 43-49.
[3] 张祎贝, 陈务军, 谢超, 等. 大尺度空间薄膜地面振动试验网格膜等效理论分析与数值模拟[J]. 载人航天, 2019, 25(4): 419-424.
  ZHANG Yibei, CHEN Wujun, XIE Chao, et al. Equivalent theoretical analysis and numerical simulation of grid membrane for large-scale space film ground vibration test[J]. Manned Spaceflight, 2019, 25(4): 419-424.
[4] XIAO W W, CHEN W J, FU G Y. Wrinkle analysis of the space inflatable paraboloid antenna[J]. Journal of Shanghai Jiao Tong University (Science), 2011, 16(1): 24-33.
[5] 张宇, 王晓亮. 基于显式动力学的软式飞艇流固耦合计算框架[J]. 上海交通大学学报, 2021, 55(3): 311-319.
  ZHANG Yu, WANG Xiaoliang. Fluid-structure interaction calculation framework for non-rigid airship based on explicit dynamics[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 311-319.
[6] TATEMATSU Y, SUZUKI T, YAMAZAKI M, et al. Verification of the similarity rules for spin deployment membrane in the ground experiment[C]// The 4th AIAA Spacecraft Structures Conference. Washington D. C., USA: American Institute of Aeronautics and Astronautics, 2017: 1114-1126.
[7] 陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(2): 234-238.
  CHEN Yufeng, CHEN Wujun, HE Yanli, et al. Dry and wet modal analysis and evaluation of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 234-238.
[8] 张祎贝, 陈务军, 邓小伟, 等. 薄膜结构空气与低真空环境下模态辨识仿真及试验[J]. 振动与冲击, 2020, 39(20): 168-174.
  ZHANG Yibei, CHEN Wujun, DENG Xiaowei, et al. Simulation and experiment for membrane modal identification in the air and low vacuum environment[J]. Journal of Vibration and Shock, 2020, 39(20): 168-174.
[9] LI Y Q, WANG L, SHEN Z Y, et al. Added-mass estimation of flat membranes vibrating in still air[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(8): 815-824.
[10] 何泽青, 张冬辉, 宋林, 等. 正交异性薄膜非线性振动分析[J]. 振动与冲击, 2018, 37(12): 252-259.
  HE Zeqing, ZHANG Donghui, SONG Lin, et al. Nonlinear vibration analysis of orthotropic membrane[J]. Journal of Vibration and Shock, 2018, 37(12): 252-259.
[11] TIMOSHENKO S, YOUNG S H, WEAVER W. Vibration problems in engineering[M]. 4th ed. New York,USA: John Wiley & Sons, 1974.
[12] LEE N, LEE S, CHO H, et al. Effect of flexibility on flapping wing characteristics in hover and forward flight[J]. Computers & Fluids, 2018, 173: 111-117.
[13] 杨兆臣, 张怀新. 基于双向流固耦合的柔性表面覆盖层减阻性能[J]. 上海交通大学学报, 2016, 50(8): 1165-1172.
  YANG Zhaochen, ZHANG Huaixin. Investigation of drag reduction of flexible surface based on bi-directional fluid-struction interaction[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1165-1172.
[14] 毛丽娜, 谭惠丰. 充气天线反射面结构的理论分析与精度预测[J]. 工程力学, 2010, 27(4): 197-201.
  MAO Lina, TAN Huifeng. Stucuture analysis and precision evaluation of inflatable antenna reflector[J]. Engineering Mechanics, 2010, 27(4): 197-201.
[15] SOARCE M. Application of finite difference equations to shell analysis[M]. Oxford, UK: Pergamon Press, 1967.
[16] 邵琦, 陆一凡, 史创, 等. 空间薄膜结构刚柔耦合非线性动力学分析[J]. 中国空间科学技术, 2022, 42(1): 47-56.
  SHAO Qi, LU Yifan, SHI Chuang, et al. Rigid-flexible coupled nonlinear dynamics and analysis of space membrane structure[J]. Chinese Space Science and Technology, 2022, 42(1): 47-56.
[17] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展[J]. 力学学报, 2017, 49(3): 487-506.
  LIU Renhuai, XUE Jianghong. Development of nonlinear mechanics for laminated composite plates and shells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 487-506.
[18] WU H X, WU R X, MA T F, et al. A nonlinear analysis of surface acoustic waves in isotropic elastic solids[J]. Theoretical & Applied Mechanics Letters, 2022, 12(2): 98-103.
[19] MAHERI M R, SEVERN R T. Experimental added-mass in modal vibration of cylindrical structures[J]. Engineering Structures, 1992, 14(3): 163-175.
Outlines

/