Mechanical Engineering

Coupling Characteristics of Lubrication and Flexible Multibody Dynamics of Piston-Liner Pairs in Diesel Engines

Expand
  • 1. Weichai Power Co., Ltd., Weifang 261061, Shandong, China
    2. Key Laboratory for Power Machinery and Engineering of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-09-13

  Revised date: 2022-11-14

  Accepted date: 2022-11-21

  Online published: 2023-03-03

Abstract

In this paper, a new piston-liner tribo-dynamic coupling model is proposed to study the dynamics and lubrication characteristics of the piston-liner friction pair of four-stroke vehicle diesel engines. In the model, the piston-rod-crankshaft flexible multibody dynamic system is described by absolute nodal coordinate formulation (ANCF), and the lubrication behavior is described by the averaged Reynolds equation and the Greenwood-Tripp asperity contact theory. The simulation is realized based on commercial software combined with self-developed codes. The results show that the liner has a maximum transient deformation of 23.6 μm due to cylinder pressure and piston knocking behavior. Compared with the rigid model, the proposed model considering the elastic deformation increases lateral displacement of piston by 40% with oil film pressure concentration in lubrication domain. In addition, the friction power loss of flexible model in one cycle is smaller and 17.7% lower than that of rigid model.

Cite this article

ZHAI Xumao, TIAN Xinwei, ZHANG Chuanbin, LI Yujuan, LIU Shuo, CUI Yi . Coupling Characteristics of Lubrication and Flexible Multibody Dynamics of Piston-Liner Pairs in Diesel Engines[J]. Journal of Shanghai Jiaotong University, 2024 , 58(3) : 324 -332 . DOI: 10.16183/j.cnki.jsjtu.2022.357

References

[1] 成东康. 基于流固耦合传热的活塞缸套摩擦性能仿真与实验研究[D]. 天津: 河北工业大学, 2018.
  CHENG Dongkang. Simulation and experimental research on friction performance of piston cylinder liner based on fluid-solid coupling heat transfer[D]. Tianjin: Hebei University of Technology, 2018.
[2] 刘广胜, 孙军. 活塞组件-缸套摩擦副润滑研究综述[J]. 汽车工程学报, 2019, 9(1): 1-12.
  LIU Guangsheng, SUN Jun. A review of research on the lubrication of the piston assembly-cylinder friction pair in internal combustion engines[J]. Chinese Journal of Automotive Engineering, 2019, 9(1): 1-12.
[3] TIAN J, FENG H, FENG Y, et al. Piston dynamics analysis considering skirt-liner dynamic clearance[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(13): 3538-3553.
[4] QASIM S A, MALIK M A, CHAUDHRI U F, et al. Non-Newtonian elastohydrodynamic lubrication fluid flow modeling of piston skirts considering low speed effects in initial engine start up[C]// ASME International Mechanical Engineering Congress and Exposition. Vancouver, British Columbia, Canada: ASME, 2010: 547-556.
[5] 江仁埔, 郭智威, 饶响, 等. 表面织构对缸套-活塞环摩擦学性能的影响[J]. 内燃机学报, 2018, 36(5): 471-479.
  JIANG Renpu, GUO Zhiwei, RAO Xiang, et al. Influences of thread grooves surface texturing on tribological properties of cylinder liner-piston ring[J]. Transactions of CSICE, 2018, 36(5): 471-479.
[6] 王庆生, 刘焜. 内燃机活塞二阶运动建模与参数设计仿真[J]. 系统仿真学报, 2011, 23(5): 886-890.
  WANG Qingsheng, LIU Kun. Model for piston secondary motion of combustion engine and simulation of parameters design[J]. Journal of System Simulation, 2011, 23(5): 886-890.
[7] FANG C, MENG X, XIE Y. A piston tribodynamic model with deterministic consideration of skirt surface grooves[J]. Tribology International, 2017, 110: 232-251.
[8] 杨靖, 吴杰, 张勇, 等. 活塞摩擦与敲击特性关键影响参数的优化研究[J]. 内燃机工程, 2021, 42(2): 95-103.
  YANG Jing, WU Jie, ZHANG Yong, et al. Optimization study on key parameters influencing friction and slap characteristics of pistons[J]. Chinese Internal Combustion Engine Engineering, 2021, 42(2): 95-103.
[9] 吕延军, 李猛, 张永芳, 等. 轮廓参数对活塞二阶运动和裙部润滑性能的影响研究[J]. 机械工程学报, 2018, 54(15): 100-116.
  Lü Yanjun, LI Meng, ZHANG Yongfang, et al. Effect of piston skirt profile parameter on secondary motion and lubrication performance of piston[J]. Chinese Journal of Mechanical Engineering, 2018, 54(15): 100-116.
[10] 张桂昌. 基于热机耦合的柴油机活塞系统敲击噪声与润滑研究及优化设计[D]. 天津: 天津大学, 2012.
  ZHANG Guichang. Research on impact noise and lubrication of diesel engine piston assembly considering thermal-mechanical coupling loads and optimization design[D]. Tianjin:Tianjin University, 2012.
[11] 方聪聪. 基于多体动力学的活塞-缸套系统摩擦力预测模型及其测量技术研究[D]. 上海: 上海交通大学, 2018.
  FANG Congcong. Research on the multibody dynamics based prediction model and measurement technology for the piston-liner friction[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[12] TIAN Q, FLORES P, LANKARANI H M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints[J]. Mechanism and Machine Theory, 2018, 122: 1-57.
[13] PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 101(2): 220-229.
[14] WU C, ZHENG L. An average Reynolds equation for partial film lubrication with a contact factor[J]. Journal of Tribology, 1989, 111(1): 188-191.
[15] HAMID Y, USMAN A, AFAQ S K, et al. Numeric based low viscosity adiabatic thermo-tribological performance analysis of piston-skirt liner system lubrication at high engine speed[J]. Tribology International, 2018, 126: 166-176.
[16] ZHAO B, DAI X, ZHANG Z, et al. A new numerical method for piston dynamics and lubrication analysis[J]. Tribology International, 2016, 94: 395-408.
[17] SHABANA A. Dynamics of multibody systems[M]. Cambridge, UK: Cambridge University Press, 2013: 157-184.
[18] RONG B, RUI X, TAO L, et al. Theoretical modeling and numerical solution methods for flexible multibody system dynamics[J]. Nonlinear Dynamics, 2019, 98(2): 1519-1553.
Outlines

/