Journal of Shanghai Jiaotong University >
Comprehensive Analysis of Performance of Air Cooled Multistage Thermoelectric Cooler
Received date: 2022-11-07
Revised date: 2023-01-07
Accepted date: 2023-02-10
Online published: 2023-03-06
The multistage thermoelectric cooler can provide a larger temperature difference, but its refrigeration and economic performance decreases rapidly with the increase of stages. Considering all kinds of internal effects of thermoelectric materials and the irreversibility of external heat transfer, a finite time thermodynamic model of air cooling multistage thermoelectric cooler is established. The calculation method for cooling capacity and coefficient of performance are given. In order to describe and analyze the performance of multistage thermoelectric cooler comprehensively, the index thermodynamic perfectibility is introduced, and the performance evaluation index of coordinated performance coefficient is proposed. The effects of working current, cross-sectional area of thermoelectric leg and temperature difference on cooling capacity, coefficient of performance, thermodynamic perfectibility and coordination performance coefficient are analyzed. With the cooling temperature difference of 87 ℃, when the current is 2.55 A and 1.30 A respectively, and the cross-sectional area of the thermoelectric arm is 2.2 mm2 and 3.0 mm2 respectively, the cooling capacity and coefficient of performance reach the maximum respectively. Considering the refrigeration and economic performance, when the current is 1.75 A, the best coordination performance of cooling capacity, power consumption, and refrigeration coefficient can be obtained.
SUN Yuetong, MENG Fankai, ZHOU Lin, XU Chenxin . Comprehensive Analysis of Performance of Air Cooled Multistage Thermoelectric Cooler[J]. Journal of Shanghai Jiaotong University, 2024 , 58(3) : 371 -381 . DOI: 10.16183/j.cnki.jsjtu.2022.451
[1] | YANG H, ZHAO H, XIA G. Performance analysis of multi thermoelectric cooling modules[J]. Journal of Physics: Conference Series, 2021, 2030(1): 12015. |
[2] | CHEN L G, MENG F K, GE Y L, et al. Performance optimization for a multielement thermoelectric refrigerator with linear phenomenological heat transfer law[J]. Journal of Non-Equilibrium Thermodynamics, 2021, 46(2): 149-162. |
[3] | 聂山钧, 王明富, 高晓东, 等. 热电制冷器温度依赖的材料参数的提取[J]. 哈尔滨工业大学学报, 2019, 51(11): 68-74. |
NIE Shanjun, WANG Mingfu, GAO Xiaodong, et al. Extraction of the temperature-dependent thermoelectric material parameters of thermoelectric cooler[J]. Journal of Harbin Institute of Technology, 2019, 51(11): 68-74. | |
[4] | 段懿玲, 刘作霖, 林尚超. 固态温差发电机能拥有卡诺热机效率吗?[J]. 上海交通大学学报, 2021, 55(Sup.1): 112-115. |
DUAN Yiling, LIU Zuolin, LIN Shangchao. Can solid-state thermoelectric generators acquire efficiency of carnot engines?[J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 112-115. | |
[5] | 江帆, 孟凡凯, 陈林根, 等. 变温热源小型热电冷水机结构设计与性能分析[J]. 工程热物理学报, 2020, 41(7): 1573-1578. |
JIANG Fan, MENG Fankai, CHEN Lingen, et al. Structural design and performance analysis of a small thermoelectric chiller with variable temperature heat reservoris[J]. Journal of Engineering Thermophysics, 2020, 41(7): 1573-1578. | |
[6] | GAO Y W, SHI C L, WANG X D. Numerical study on transient supercooling performance of annular thermoelectric cooler[J]. Applied Thermal Engineering, 2021, 182: 116090. |
[7] | 孙淼, 申利梅, 张腾, 等. 热电冷却半导体激光器的温控策略研究[J]. 工程热物理学报, 2018, 39(7): 1417-1423. |
SUN Miao, SHEN Limei, ZHANG Teng, et al. Study of temperature control strategy for thermoelectric cooling semiconductor lasers[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1417-1423. | |
[8] | 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. |
ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of hot mw infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. | |
[9] | JEONG S, PANASYUK M I, REGLERO V, et al. UBAT of UFFO/Lomonosov: The X-ray space telescope to observe early photons from gamma-ray bursts[J]. Space Science Reviews, 2018, 214(1): 16-41. |
[10] | 孙悦桐, 孟凡凯, 徐辰欣. 多级热电制冷技术研究进展[J]. 低温与超导, 2022, 50(10): 58-64. |
SUN Yuetong, MENG Fankai, XU Chenxin. Review of progress and application of multistage thermoelectric cooling device[J]. Cryogenics & Superconductivity, 2022, 50(10): 58-64. | |
[11] | PETKOV T P, BELOVSKI I R, IVANOV K I, et al. Modeling the electrical parameters of a multi-stage thermoelectric module by a neural network[C]// 2020 XI National Conference with International Participation (ELECTRONICA). Sofia, Bulgaria: IEEE, 2020: 1-4. |
[12] | 曹海山. 热电制冷技术进展与展望[J]. 制冷学报, 2022, 43(4): 26-34. |
CAO Haishan. Progress and prospect of thermoelectric refrigeration[J]. Journal of Refrigeration, 2022, 43(4): 26-34. | |
[13] | KARIMI G, CULHAM J R, KAZEROUNI V. Performance analysis of multi-stage thermoelectric coolers[J]. International Journal of Refrigeration, 2011, 34(8): 2129-2135. |
[14] | PARASHCHUK T, SIDORENKO N, IVANTSOV L, et al. Development of a solid-state multi-stage thermoelectric cooler[J]. Journal of Power Sources, 2021, 496: 229821. |
[15] | PHONG L N, SHIH I. Low temperature thermoelectric coolers for infrared detectors[C]//, Infrared Technology and Applications XXIV. San Diego, USA:SPIE, 1998: 824-831. |
[16] | BHAN R K, DHAR V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization[J]. Opto-Electronics Review, 2019, 27(2): 174-193. |
[17] | PATEL V K, SAVSANI V J, TAWHID M A. Thermal system optimization: A population-based metaheuristic approach[M]. Cham, Switzerland: Springer International Publishing, 2019. |
[18] | 陈林根. 不可逆过程和循环的有限时间热力学分析[M]. 北京: 高等教育出版社, 2005. |
CHEN Lingen. Finite time thermodynamic analysis of irreversible processes and cycles[M]. Beijing: Higher Education Press, 2005. | |
[19] | 陈林根, 夏少军. 不可逆过程广义热力学动态优化研究进展[J]. 中国科学: 技术科学, 2019, 49(9): 981-1022. |
CHEN Lingen, XIA Shaojun. Research progress on generalized thermodynamic dynamic optimization of irreversible processes[J]. Scientia Sinica Technologica, 2019, 49(9): 981-1022. | |
[20] | 叶奇昉, 陈江平, 陈芝久. 两级制冷系统的有限时间热经济性分析[J]. 上海交通大学学报, 2006(8): 1381-1384. |
YE Qifang, CHEN Jiangping, CHEN Zhijiu. Thermoeconomic analysis for a two-stage combined refrigeration on system[J]. Journal of Shanghai Jiao Tong University, 2006(8): 1381-1384. | |
[21] | CHEN L G, XIA S J. Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics[J]. Energy, 2022, 255: 124526. |
[22] | ACIKKALP E, CHEN L, AHMADI M H. Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell-thermoelectric generator hybrid systems[J]. Energy Reports, 2020, 6: 10-16. |
[23] | CHEN L G, QI C Z, GE Y L, et al. Thermal Brownian heat engine with external and internal irreversiblities[J]. Energy, 2022, 255: 124582. |
[24] | CHEN L G, LORENZINI G. Comparative performance for thermoelectric refrigerators with radiative and Newtonian heat transfer laws[J]. Case Studies in Thermal Engineering, 2022, 34: 102069. |
[25] | 孟凡凯, 陈赵军, 徐辰欣. 变温热源热管式热电制冷器结构设计和性能分析[J]. 东南大学学报(自然科学版), 2022, 52(2): 309-319. |
MENG Fankai, CHEN Zhaojun, XU Chenxin. Structure design and performance analysis on heat pipe-cooled thermoelectric refrigerator with variable temperature heat source[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 309-319. | |
[26] | 马一太, 凌泓. 制冷与热泵产品热力学完善度的原理与实例[J]. 流体机械, 2011, 39(3): 71-74. |
MA Yitai, LING hong. Principle and examples of thermodynamic perfectibility of refrigeration and heat pump production[J]. Fluid Machinery, 2011, 39(3): 71-74. | |
[27] | 梁婷. 热电制冷器的双目标优化研究[D]. 武汉: 华中科技大学, 2015. |
LIANG Ting. Research on two-objective optimization of thermoelectric refrigerator[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
[28] | 孟凡凯, 陈赵军, 徐辰欣, 等. 基于热管散热的热电制冷器性能综合分析[J]. 华南理工大学学报(自然科学版), 2021, 49(10): 104-113. |
MENG Fankai, CHEN Zhaojun, XU Chenxin, et al. Performance analysis of thermoelectric refrigerator based on heat pipe dissipation[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(10): 104-113. |
/
〈 |
|
〉 |