Journal of Shanghai Jiaotong University >
Overview of Protection Principle of Power Grid in Integrated Energy System
Received date: 2021-12-07
Revised date: 2022-01-06
Accepted date: 2022-03-21
Online published: 2023-01-07
Integrated energy system (IES) has become the research hotspot of the energy system due to the characteristics of multi-energy joint coordination and energy efficiency. Because of the complex structure, control, and fault characteristics of IES, it is difficult for traditional protection principles and schemes to adapt to system requirements. This paper first analyzes the structural characteristics and control characteristics of IES, and studies the fault characteristics of the core power part based on its characteristics. Then, based on the fault characteristics used in the existing protection principles, it classifies and analyzes domestic and foreign research, improvement status, and protection applicability. Finally, it discusses and prospects the research and development direction of IES line protection principles and schemes.
CHU Xu, BAO Zehong . Overview of Protection Principle of Power Grid in Integrated Energy System[J]. Journal of Shanghai Jiaotong University, 2023 , 57(4) : 379 -392 . DOI: 10.16183/j.cnki.jsjtu.2021.492
[1] | 杨海柱, 李梦龙, 江昭阳, 等. 考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J]. 电力系统保护与控制, 2020, 48(10): 30-37. |
[1] | YANG Haizhu, LI Menglong, JIANG Zhaoyang, et al. Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J]. Power System Protection and Control, 2020, 48(10): 30-37. |
[2] | 刘海金, 李斌, 温伟杰, 等. 柔性直流系统的线路保护关键技术与展望[J]. 电网技术, 2021, 45(9): 3463-3477. |
[2] | LIU Haijin, LI Bin, WEN Weijie, et al. Review and prospect on transmission line protection in flexible DC system[J]. Power System Technology, 2021, 45(9): 3463-3477. |
[3] | 丁涛, 牟晨璐, 别朝红, 等. 能源互联网及其优化运行研究现状综述[J]. 中国电机工程学报, 2018, 38(15): 4318-4328. |
[3] | DING Tao, MU Chenlu, BIE Zhaohong, et al. Review of energy internet and its operation[J]. Proceedings of the CSEE, 2018, 38(15): 4318-4328. |
[4] | 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. |
[4] | YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. |
[5] | 程浩忠, 胡枭, 王莉, 等. 区域综合能源系统规划研究综述[J]. 电力系统自动化, 2019, 43(7): 2-13. |
[5] | CHEN Haozhong, HU Xiao, WANG Li, et al. Review on research of regional integrated energy system planning[J]. Automation of Electric Power Systems, 2019, 43(7): 2-13. |
[6] | 刘文霞, 李征洲, 杨粤, 等. 计及需求响应不确定性的综合能源系统协同优化配置[J]. 电力系统自动化, 2020, 44(10): 41-53. |
[6] | LIU Wenxia, LI Zhengzhou, YANG Yue, et al. Collaborative optimal configuration for integrated energy system considering uncertainties demand response[J]. Automation of Electric Power Systems, 2020, 44(10): 41-53. |
[7] | 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207. |
[7] | JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207. |
[8] | HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: The energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148. |
[9] | 王喜文, 王叶子. 德国信息化能源(E-Energy)促进计划[J]. 电力需求侧管理, 2011, 13(4): 75-76. |
[9] | WANG Xiwen, WANG Yezi. Introduction of German smart grid “E-Energy” project promotion[J]. Power Demand Side Management, 2011, 13(4): 75-76. |
[10] | KAKIGANO H, MIURA Y, ISE T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075. |
[11] | 王伟亮, 王丹, 贾宏杰, 等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报, 2016, 36(12): 3292-3306. |
[11] | WANG Weiliang, WANG Dan, JIA Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016, 36(12): 3292-3306. |
[12] | 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42(6): 1697-1708. |
[12] | ZENG Ming, LIU Yingxin, ZHOU Pengcheng, et al. Review and prospects of integrated energy system modeling and benefit evaluation[J]. Power System Technology, 2018, 42(6): 1697-1708. |
[13] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24. |
[13] | YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24. |
[14] | 原凯, 李敬如, 宋毅, 等. 区域能源互联网综合评价技术综述与展望[J]. 电力系统自动化, 2019, 43(14): 41-52. |
[14] | YUAN Kai, LI Jingru, SONG Yi, et al. Review and prospect of comprehensive evaluation technology of regional energy internet[J]. Automation of Electric Power Systems, 2019, 43(14): 41-52. |
[15] | 刘涤尘, 彭思成, 廖清芬, 等. 面向能源互联网的未来综合配电系统形态展望[J]. 电网技术, 2015, 39(11): 3023-3034. |
[15] | LIU Dichen, PENG Sicheng, LIAO Qingfen, et al. Outlook of future integrated distribution system morphology orienting to energy internet[J]. Power System Technology, 2015, 39(11): 3023-3034. |
[16] | 孙利, 陈武, 蒋晓剑, 等. 能源互联网框架下多端口能量路由器的多工况协调控制[J]. 电力系统自动化, 2020, 44(3): 32-45. |
[16] | SUN Li, CHEN Wu, JIANG Xiaojian, et al. Coordinated control of multiple operation for multi-port energy router in energy internet framework[J]. Automation of Electric Power Systems, 2020, 44(3): 32-45. |
[17] | 年珩, 程鹏, 贺益康. 故障电网下双馈风电系统运行技术研究综述[J]. 中国电机工程学报, 2015, 35(16): 4184-4197. |
[17] | NIAN Heng, CHENG Peng, HE Yikang. Review on operation techniques for DFIG-based wind energy conversion systems under network faults[J]. Proceedings of the CSEE, 2015, 35(16): 4184-4197. |
[18] | 张长久, 邬小波, 谢小英. 基于GB/T 33593标准的DG低电压穿越输出特性研究[J]. 电力系统保护与控制, 2019, 47(24): 76-83. |
[18] | ZHANG Hengjiu, WU Xiaobo, XIE Xiaoying. Research on low voltage ride through of DG characteristics based on GB/T 33593 standard[J]. Power System Protection and Control, 2019, 47(24): 76-83. |
[19] | 鲁月华, 樊艳芳, 罗瑞. 适用于交直流混联系统的时域全量故障模型判别纵联保护方案[J]. 电力系统保护与控制, 2020, 48(19): 81-88. |
[19] | LU Yuehua, FAN Yanfang, LUO Rui. Principle of active distribution network pilot protection based on time domain model identification[J]. Power System Protection and Control, 2020, 48(19): 81-88. |
[20] | PAN Y, MEI F, ZHOU C, et al. Analysis on integrated energy system cascading failures considering interaction of coupled heating and power networks[J]. IEEE Access, 2019, 7: 89752-89765. |
[21] | 何正友, 李波, 廖凯, 等. 新形态城市电网保护与控制关键技术[J]. 中国电机工程学报, 2020, 40(19): 6193-6207. |
[21] | HE Zhengyou, LI Bo, LIAO Kai, et al. Key technologies for protection and control of novel urban power grids[J]. Proceedings of the CSEE, 2020, 40(19): 6193-6207. |
[22] | 张保会, 王进, 郝治国, 等. 风电接入对继电保护的影响(三)——风电场送出变压器保护性能分析[J]. 电力自动化设备, 2013, 33(3): 1-8. |
[22] | ZHANG Baohui, WANG Jin, HAO Zhiguo, et al. Impact of wind farm integration on relay protection (3): Performance analysis for wind farm outgoing transformer protection[J]. Electric Power Automation Equipment, 2013, 33(3): 1-8. |
[23] | 李松林, 欧阳金鑫. 计及双馈机组影响的同步发电机短路电流特征研究[J]. 电网与清洁能源, 2017, 33(2): 124-129. |
[23] | LI Songlin, OUYANG Jinxin. Research on characteristics of short-circuit current of synchronous generator considering doubly-fed induction generator[J]. Power System and Clean Energy, 2017, 33(2): 124-129. |
[24] | 韩海娟, 牟龙华, 郭文明. 基于故障分量的微电网保护适用性[J]. 电力系统自动化, 2016, 40(3): 90-96. |
[24] | HAN Haijuan, MU Longhua, GUO Wenming. Adaptability of microgrid protection based on fault components[J]. Automation of Electric Power Systems, 2016, 40(3): 90-96. |
[25] | 李彦宾, 贾科, 毕天姝, 等. 电流差动保护在逆变型新能源场站送出线路中的适应性分析[J]. 电力系统自动化, 2017, 41(12): 100-105. |
[25] | LI Yanbin, JIA Ke, BI Tianshu, et al. Adaptability analysis of current differential protection of outgoing transmission line emanating from inverter-interfaced renewable energy power plants[J]. Automation of Electric Power Systems, 2017, 41(12): 100-105. |
[26] | 刘其辉, 葛立坤, 郭晓芸. 适应多类型电网故障的储能系统预测电流控制与LVRT策略[J]. 电力系统保护与控制, 2014, 42(10): 96-103. |
[26] | LIU Qihui, GE Likun, GUO Xiaoyun. A low voltage ride through technology adapting to multi-grid fault of battery energy storage system[J]. Power System Protection and Control, 2014, 42(10): 96-103. |
[27] | 王守相, 刘琪, 薛士敏, 等. 直流配电系统控制与保护协同关键技术及展望[J]. 电力系统自动化, 2019, 43(23): 23-30. |
[27] | WANG Shouxiang, LIU Qi, XUE Shimin, et al. Key technologies and prospect for coordinated control and protection in DC distribution system[J]. Automation of Electric Power Systems, 2019, 43(23): 23-30. |
[28] | 徐可寒, 张哲, 刘慧媛, 等. 光伏电源故障特性研究及影响因素分析[J]. 电工技术学报, 2020, 35(2): 359-371. |
[28] | XU Kehan, ZHANG Zhe, LIU Huiyuan, et al. Study on fault characteristics and its related impact factors of photovoltaic generator[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 359-371. |
[29] | MA J, ZHANG W, LIU J, et al. A novel adaptive distance protection scheme for DFIG wind farm collector lines[J]. International Journal of Electrical Power & Energy Systems, 2018, 94: 234-244. |
[30] | CHEN S, TAI N, FAN C, et al. Adaptive distance protection for grounded fault of lines connected with doubly-fed induction generators[J]. IET Generation, Transmission & Distribution, 2017, 11(6): 1513-1520. |
[31] | 文明浩, 陈德树, 尹项根. 超高压线路等传变快速距离保护[J]. 中国电机工程学报, 2012, 32(4): 145-150. |
[31] | WEN Minghao, CHEN Deshu, YI Shuogen. Fast distance protection of EHV transmission lines based on equal transfer processes[J]. Proceedings of the CSEE, 2012, 32(4): 145-150. |
[32] | 戚宣威, 叶雨田, 王松, 等. 基于异构边界的串补输电线路单端量全线速动保护新原理[J]. 电力系统自动化, 2019, 43(23): 1-8. |
[32] | QI Xuanwei, YE Yutian, WANG Song, et al. A novel fast and full-line for series compensated transmission lines based on heterogeneous boundary[J]. Automation of Electric Power Systems, 2019, 43(23): 1-8. |
[33] | WEI F, LIN X, LI Z, et al. A new distance protection method considering TCSC-FCL dynamic impedance characteristics[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1428-1437. |
[34] | KONG X. A three-zone distance protection scheme capable to cope with the impact of UPFC[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 949-959. |
[35] | 曹亚倩, 郑晓冬, 丛新棚, 等. 基于虚拟能量调节偏差的MMC-HVDC输电线路保护方案[J]. 电力系统自动化, 2020, 44(23): 109-116. |
[35] | CAO Yaqian, ZHENG Xiaodong, CONG Xinpeng, et al. Protection scheme for MMC-HVDC transmission line based on virtual energy regulation deviation[J]. Automation of Electric Power Systems, 2020, 44(23): 109-116. |
[36] | 朱妍, 陆于平, 黄涛. 计及谐波频率特征的含风电配电网充分式电流幅值差动保护[J]. 电力系统自动化, 2020, 44(16): 130-136. |
[36] | ZHU Yan, LU Yuping, HUANG Tao. Sufficient current amplitude differential protection considering frequency characteristic of harmonics for distribution network with wind power[J]. Automation of Electric Power Systems, 2020, 44(16): 130-136. |
[37] | 吕哲, 王增平. 基于暂态电流波形特征的快速差动保护新原理[J]. 中国电机工程学报, 2020, 40(5): 1534-1545. |
[37] | LYU Zhe, WANG Zengping. A transient current waveform feature based novel high-speed differential protection[J]. Proceedings of the CSEE, 2020, 40(5): 1534-1545. |
[38] | GAO H, LI J, XUN B. Principle and implementation of current differential protection in distribution networks with high penetration of DGs[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 565-574. |
[39] | 毕天姝, 李彦宾, 贾科, 等. 基于暂态电流波形相关性的新能源场站送出线路纵联保护[J]. 中国电机工程学报, 2018, 38(7): 2012-2019. |
[39] | BI Tianshu, LI Yanbin, JIA Ke, et al. Transient current waveform similarity based pilot protection for transmission lines connected to renewable energy power plants[J]. Proceedings of the CSEE, 2018, 38(7): 2012-2019. |
[40] | 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44(15): 103-115. |
[40] | JIA Ke, YANG Zhe, WEI Chao, et al. Pilot protection based on Spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of Electric Power Systems, 2020, 44(15): 103-115. |
[41] | 郑黎明, 贾科, 毕天姝, 等. 基于余弦相似度的新能源场站T接型送出线路纵联保护[J]. 电力系统自动化, 2019, 43(18): 111-124. |
[41] | ZHENG Liming, JIA Ke, BI Tianshu, et al. Cosine similarity based pilot protection of teed transmission line connected to renewable energy power plants[J]. Automation of Electric Power Systems, 2019, 43(18): 111-124. |
[42] | CHEN L, LIN X, LI Z, et al. Similarity comparison based high-speed pilot protection for transmission line[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 938-948. |
[43] | JIN N, LIN X, RONG Z, et al. Phase-space-based pilot main protection for a transmission line immune to timing attack and controllable shunt reactors[J]. IEEE Transactions on Power Delivery, 2020, 35(2): 654-664. |
[44] | 宁连营, 邰能灵, 郑晓冬, 等. 基于自定义差分电流的MMC-HVDC输电线路纵联保护[J]. 电力系统自动化, 2017, 41(17): 87-93. |
[44] | NING Lianying, TAI Nengling, ZHENG Xiaodong, et al. Pilot protection for MMC-HVDC transmission line based on custom difference current[J]. Automation of Electric Power Systems, 2017, 41(17): 87-93. |
[45] | 郑涛, 吴琼, 吕文轩, 等. 基于主动限流控制的直流配电网保护及故障隔离方案[J]. 电力系统自动化, 2020, 44(5): 114-121. |
[45] | ZHENG Tao, WU Qiong, LYU Wenxuan, et al. Protection and fault isolation scheme based on active current-limiting control for DC distribution network[J]. Automation of Electric Power Systems, 2020, 44(5): 114-121. |
[46] | 薛士敏, 刘存甲, 李蒸, 等. 基于控保协同的环形直流微网单端测距保护技术[J]. 电力系统自动化, 2020, 44(5): 122-129. |
[46] | XUE Shimin, LIU Cunjia, LI Zheng, et al. Single-end ranging protection technology for ring DC microgrid based on coordinated control and protection[J]. Automation of Electric Power Systems, 2020, 44(5): 122-129. |
[47] | JIA K, CHEN J, XUAN Z, et al. Active protection for photovoltaic DC-boosting integration system during FRT[J]. IET Generation, Transmission & Distribution, 2019, 13(18): 4081-4088. |
[48] | XUE S, LIU C. Fault location principle and 2-step isolation scheme for a loop-type DC grid[J]. IET Generation, Transmission & Distribution, 2018, 12(12): 2937-2943. |
[49] | 王聪博, 贾科, 毕天姝, 等. 基于控保协同的多端柔性直流配电系统线路保护[J]. 中国电机工程学报, 2020, 40(8): 2559-2568. |
[49] | WANG Congbo, JIA Ke, BI Tianshu, et al. Line protection method for multi-terminal flexible DC distribution system based on control and protection coordination[J]. Proceedings of the CSEE, 2020, 40(8): 2559-2568. |
[50] | ZHU R, JIA K, BI T, et al. Active control-based protection for a flexible DC system of a PV power plant[J]. International Journal of Electrical Power & Energy Systems, 2020, 114: 1-10. |
[51] | 宋国兵, 侯俊杰, 郭冰. 基于主动探测式的柔性直流电网纵联保护[J]. 电网技术, 2020, 44(10): 4001-4010. |
[51] | SONG Guobing, HOU Junjie, GUO Bing. Pilot protection of flexible DC grid based on active detection[J]. Power System Technology, 2020, 44(10): 4001-4010. |
[52] | LIU W, LIU F, ZHA X, et al. An improved SSCB combining fault interruption and fault location functions for DC line short-circuit fault protection[J]. IEEE Transactions on Power Delivery, 2019, 34(3): 858-868. |
[53] | 解超, 李凤婷, 王彦鹏, 等. 基于高频信号的输电线路主动式保护[J]. 电力系统保护与控制, 2017, 45(7): 6-12. |
[53] | XIE Chao, LI Fengting, WANG Yanpeng, et al. An active protection of transmission line based on high-frequency signal[J]. Power System Protection and Control, 2017, 45(7): 6-12. |
[54] | 宋国兵, 王婷, 张晨浩, 等. 利用健全极MMC注入特征信号的直流线路故障性质判别方法[J]. 电工技术学报, 2019, 34(5): 994-1003. |
[54] | SONG Guobing, WANG Ting, ZHANG Chenhao, et al. DC line fault identification based on characteristic signal injection using the MMC of sound pole[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 994-1003. |
[55] | 王帅, 毕天姝, 贾科. 基于主动脉冲的MMC-HVDC单极接地故障测距[J]. 电工技术学报, 2017, 32(1): 12-19. |
[55] | WANG Shuai, BI Tianshu, JIA Ke. Single terminal fault location for MMC-HVDC transmission line using active pulse[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 12-19. |
[56] | 曾德辉, 王钢, 郭敬梅, 等. 含逆变型分布式电源配电网自适应电流速断保护方案[J]. 电力系统自动化, 2017, 41(12): 86-92. |
[56] | ZENG Dehui, WANG Gang, GUO Jingmei, et al. Adaptive current protection scheme for distribution network with inverter-interfaced distributed generators[J]. Automation of Electric Power Systems, 2017, 41(12): 86-92. |
[57] | 陈实, 邰能灵, 范春菊, 等. 考虑风力发电的配电网弱馈线路自适应电流保护[J]. 电工技术学报, 2017, 32(3): 65-73. |
[57] | CHEN Shi, TAI Nengling, FAN Chunju, et al. An adaptive current protection for weak-infeed distribution lines with wind generation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 65-73. |
[58] | MA J, LIU J, DENG Z, et al. An adaptive directional current protection scheme for distribution network with DG integration based on fault steady-state component[J]. International Journal of Electrical Power & Energy Systems, 2018, 102: 223-234. |
[59] | 薛永端, 汪洋, 徐丙垠. 小电阻接地系统高灵敏度阶段式零序过电流保护[J]. 中国电机工程学报, 2020, 40(19): 6217-6227. |
[59] | XUE Yongduan, WANG Yang, XU Bingyin. High sensitive zero-sequence stage current protection for low-resistance grounding system[J]. Proceedings of the CSEE, 2020, 40(19): 6217-6227. |
[60] | 汪光远, 马啸, 林湘宁, 等. 基于集成学习的柔性直流配电线路单端量高灵敏保护方案[J]. 中国电机工程学报, 2021, 41(24): 8447-8463. |
[60] | WANG Guangyuan, MA Xiao, LIN Xiangning, et al. Single-ended high-sensitivity protection scheme for flexible DC distribution line based on ensemble learning[J]. Proceedings of the CSEE, 2021, 41(24): 8447-8463. |
[61] | 杨赛昭, 向往, 张峻榤, 等. 基于人工神经网络的架空柔性直流电网故障检测方法[J]. 中国电机工程学报, 2019, 39(15): 4416-4430. |
[61] | YANG Saizhao, XIANG Wang, ZHANG Junjie, et al. The artificial neural network based fault detection method for the overhead MMC based DC grid[J]. Proceedings of the CSEE, 2019, 39(15): 4416-4430. |
[62] | YU J, HOU Y, LAM A, et al. Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1694-1703. |
[63] | 邓丰, 李欣然, 曾祥君. 基于波形唯一和时-频特征匹配的单端行波保护和故障定位方法[J]. 中国电机工程学报, 2018, 38(5): 1475-1487. |
[63] | DENG Feng, LI Xinran, ZENG Xiangjun. Research on single-end traveling wave based protection and fault location method based on waveform uniqueness and feature matching in the time and frequency domain[J]. Proceedings of the CSEE, 2018, 38(5): 1475-1487. |
[64] | ZHANG C, SONG G, WANG T. An improved non-unit traveling wave protection method with adaptive threshold value and its application in HVDC grids[J]. IEEE Transactions on Power Delivery, 2020, 35(4): 1800-1811. |
[65] | 宋国兵, 张晨浩, 杨黎明, 等. 利用波前信息的直流输电线路超高速保护原理[J]. 电网技术, 2019, 43(2): 576-581. |
[65] | SONG Guobing, ZHANG Chenhao, YANG Liming, et al. Principle of ultra-high-speed protection for DC transmission line using wave front information[J]. Power System Technology, 2019, 43(2): 576-581. |
[66] | 张晨浩, 宋国兵, 董新洲, 等. 利用波前广义Logistic函数拟合的直流输电线路快速保护原理[J]. 中国电机工程学报, 2019, 39(11): 3168-3176. |
[66] | ZHANG Chenhao, SONG Guobing, DONG Xinzhou, et al. Principle of high speed protection for DC transmission line using wave front generalized Logistic function fitting[J]. Proceedings of the CSEE, 2019, 39(11): 3168-3176. |
[67] | 张晨浩, 宋国兵, 董新洲. 利用故障电流首行波拟合的柔性直流输电线路单端行波保护原理[J]. 中国电机工程学报, 2021, 41(8): 2651-2661. |
[67] | ZHANG Chenhao, SONG Guobing, DONG Xinzhou. Principle of non-unit traveling wave protection for VSC-HVDC transmission line using fault current initial traveling wave fitting[J]. Proceedings of the CSEE, 2021, 41(8): 2651-2661. |
[68] | LI B, LV M, LI B, et al. Research on an improved protection principle based on differential voltage traveling wave for VSC-HVDC transmission lines[J]. IEEE Transactions on Power Delivery. 2020, 35(5): 2319-2329. |
[69] | TANG L, DONG X, LUO S, et al. A new differential protection of transmission line based on equivalent travelling wave[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1359-1369. |
[70] | 吴浩, 李群湛, 刘炜. 输电线路功率型行波纵联保护新方法[J]. 电力系统自动化, 2016, 40(2): 107-113. |
[70] | WU Hao, LI Qunzhan, LIU Wei. A new pilot protection algorithm based on traveling wave power for transmission lines[J]. Automation of Electric Power Systems, 2016, 40(2): 107-113. |
[71] | COSTA F B, MONTI A, LOPES F V, et al. Two-terminal traveling wave based transmission line protection[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1382-1393. |
[72] | NAMDARI F, SALEHI M. High-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 246-253. |
[73] | 张帆, 潘贞存, 马琳琳, 等. 基于模量行波传输时间差的线路接地故障测距与保护[J]. 中国电机工程学报, 2009, 29(10): 78-83. |
[73] | ZHANG Fan, PAN Zhencun, MA Linlin, et al. Transmission line fault location and protection based on the gap between zero mode and aerial mode traveling wave propagation time[J]. Proceedings of the CSEE, 2009, 29(10): 78-83. |
[74] | JAFARIAN P, SANAYE P M. High-frequency transients-based protection of multiterminal transmission lines using the SVM technique[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 188-196. |
[75] | MA Y, LI H, WANG G. Fault analysis and traveling-wave-based protection scheme for double-circuit LCC-HVDC transmission lines with shared towers[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1479-1488. |
[76] | KONG F, HAO Z, ZHANG B. A novel traveling-wave-based main protection scheme for 800 kV UHVDC bipolar transmission lines[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2159-2168. |
[77] | 谢仲润, 邹贵彬, 杜肖功, 等. 基于真双极的MTDC电网直流线路快速保护[J]. 中国电机工程学报, 2020, 40(6): 1906-1915. |
[77] | XIE Zhongrun, ZOU Guibin, DU Xiaogong, et al. Fast DC lines protection for symmetrical bipolar based MTDC grid[J]. Proceedings of the CSEE, 2020, 40(6): 1906-1915. |
[78] | 李斌, 何佳伟, 李晔, 等. 基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749. |
[78] | LI Bin, HE Jiawei, LI Ye, et al. Single-ended protection scheme based on boundary characteristic for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 5741-5749. |
[79] | 何佳伟, 李斌, 李晔, 等. 多端柔性直流电网快速方向纵联保护方案[J]. 中国电机工程学报, 2017, 37(23): 6878-6887. |
[79] | HE Jiawei, LI Bin, LI Ye, et al. A fast directional pilot protection scheme for the MMC-based MTDC grid[J]. Proceedings of the CSEE, 2017, 37(23): 6878-6887. |
[80] | HUANG Q, ZHOU G, ZHANG S, et al. A pilot protection scheme of DC lines for multi-terminal HVDC grid[J]. IEEE Transactions on Power Delivery, 2019, 34(5): 1957-1966. |
[81] | 宋国兵, 褚旭, 高淑萍. 利用滤波器支路电流的高压直流输电线路全线速动保护[J]. 中国电机工程学报, 2013, 33(22): 120-126. |
[81] | SONG Guobing, CHU Xu, GAO Shuping. A whole-line quick-action protection principle for HVDC transmission lines using one-end current of DC-filters[J]. Proceedings of the CSEE, 2013, 33(22): 120-126. |
[82] | 杨亚宇, 邰能灵, 范春菊, 等. 利用峰值频率的高压直流输电线路纵联保护方案[J]. 中国电机工程学报, 2017, 37(15): 4304-4314. |
[82] | YANG Yayu, TAI Nengling, FAN Chunju, et al. A pilot protection scheme for HVDC transmission lines based on specific-frequency[J]. Proceedings of the CSEE, 2017, 37(15): 4304-4314. |
[83] | DAI Z, LIU N, ZHANG C, et al. A pilot protection for HVDC transmission lines based on transient energy ratio of DC filter link[J]. IEEE Transactions on Power Delivery, 2020, 35(4): 1695-1706. |
[84] | 侯俊杰, 宋国兵, 常仲学. 基于暂态功率的高压直流线路单端量保护[J]. 电力系统自动化, 2019, 43(21): 203-216. |
[84] | HOU Junjie, SONG Guobing, CHANG Zhongxue. Transient power based single-end protection for HVDC transmission line[J]. Automation of Electric Power Systems, 2019, 43(21): 203-216. |
[85] | 林圣, 牟大林, 刘磊, 等. 基于特征谐波阻抗比值的HVDC直流滤波器高压电容器接地故障保护方案[J]. 中国电机工程学报, 2019, 39(22): 6617-6627. |
[85] | LIN Sheng, MU Dalin, LIU Lei, et al. Research on ground fault protection for high voltage capacitor of DC filter in HVDC based on characteristic harmonic impedance ratio[J]. Proceedings of the CSEE, 2019, 39(22): 6617-6627. |
[86] | 李慧, 罗奇, 张柏林, 等. 直流电抗器对VSC-MTDC输电系统稳定性的影响分析[J]. 电网技术, 2019, 43(7): 2641-2650. |
[86] | LI Hui, LUO Qi, ZHANG Bolin, et al. Impact of DC reactors on stability of VSC-MTDC transmission system[J]. Power System Technology, 2019, 43(7): 2641-2650. |
/
〈 |
|
〉 |