Journal of Shanghai Jiaotong University >
Low-Carbon Optimal Dispatch of Electric-Thermal System Considering Demand Response and Wind Power Consumption
Received date: 2022-03-05
Revised date: 2022-03-30
Accepted date: 2022-04-11
Online published: 2023-01-06
To solve the problems of large thermoelectric coupling in combined heat and power, high carbon emission of thermal power units, and insufficient resource flexibility on the load side in cogeneration units, a low-carbon dispatching model is established for the electricity-heat system. First, heat storage and carbon capture equipment is added on the source side while the demand response of electricity price and the heat load inertia of heating buildings are considered on the load side. Then, the sum of unit operating cost, carbon transaction cost and wind abandonment penalty cost are taken as the objective function with relevant constraints and solved by calling Gurobi solver. Finally, a comparative analysis of the economic cost, wind power consumption, and carbon emission rate of the system in different cases is conducted, which shows that the dispatching strategy proposed in this paper can improve the wind power consumption capacity while taking economy and low carbon emission into account.
LIU Zixu, MI Yang, LU Changkun, FU Yang, SU Xiangjing . Low-Carbon Optimal Dispatch of Electric-Thermal System Considering Demand Response and Wind Power Consumption[J]. Journal of Shanghai Jiaotong University, 2023 , 57(7) : 835 -844 . DOI: 10.16183/j.cnki.jsjtu.2022.056
[1] | ZHANG N, HU Z G, DAI D H, et al. Unit commitment model in smart grid environment considering carbon emissions trading[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 420-427. |
[2] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
[2] | LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. |
[3] | 米阳, 王鹏, 邓锦, 等. 孤岛交直流混合微电网群分层协调控制[J]. 电力系统保护与控制, 2021, 49(20): 1-8. |
[3] | MI Yang, WANG Peng, DENG Jin, et al. Hierarchical coordinated control of island AC/DC hybrid microgrids[J]. Power System Protection & Control, 2021, 49(20): 1-8. |
[4] | 王晓海, 乔颖, 鲁宗相, 等. 供暖季风电电量消纳能力的评估新方法[J]. 中国电机工程学报, 2015, 35(9): 2112-2119. |
[4] | WANG Xiaohai, QIAO Ying, LU Zongxiang, et al. A novel method to assess wind energy usage in the heat-supplied season[J]. Proceedings of the CSEE, 2015, 35(9): 2112-2119. |
[5] | TENG Y, HUI Q, LI Y, et al. Availability estimation of wind power forecasting and optimization of day-ahead unit commitment[J]. Journal of Modern Power Systems & Clean Energy, 2019, 7(6): 1675-1683. |
[6] | 王磊, 姜涛, 宋丹, 等. 基于灵活热电比的区域综合能源系统多目标优化调度[J]. 电力系统保护与控制, 2021, 49(8): 151-159. |
[6] | WANG Lei, JIANG Tao, SONG Dan, et al. Multi-objective optimal dispatch of a regional integrated energy system based on a flexible heat-to-electric ratio[J]. Power System Protection & Control, 2021, 49(8): 151-159. |
[7] | 李军徽, 付英男, 李翠萍, 等. 提升风电消纳的储热电混合储能系统经济优化配置[J]. 电网技术, 2020, 44(12): 4547-4557. |
[7] | LI Junhui, FU Yingnan, LI Cuiping, et al. Economic optimal configuration of hybrid energy storage system for improving wind power consumption[J]. Power System Technology, 2020, 44(12): 4547-4557. |
[8] | LI J M, WEN J Y, HAN X N. Low-carbon unit commitment with intensive wind power generation and carbon capture power plant[J]. Journal of Modern Power Systems & Clean Energy, 2015, 3(1): 63-71. |
[9] | 宋杰, 张卫国, 李树鹏, 等. 蓄热式电采暖负荷参与风电消纳运行策略研究[J]. 电力系统保护与控制, 2021, 49(3): 80-87. |
[9] | SONG Jie, ZHANG Weiguo, LI Shupeng, et al. Research on operational strategy for regenerative electric heating load participating in wind power consumption[J]. Power System Protection & Control, 2021, 49(3): 80-87. |
[10] | 黄剑平, 陈皓勇, 林镇佳, 等. 需求侧响应背景下分时电价研究与实践综述[J]. 电力系统保护与控制, 2021, 49(9): 178-187. |
[10] | HUANG Jianping, CHEN Haoyong, LIN Zhenjia, et al. A summary of time-of-use research and practice in a demand response environment[J]. Power System Protection & Control, 2021, 49(9): 178-187. |
[11] | 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45(2): 447-461. |
[11] | CUI Yang, ZENG Peng, WANG Zheng, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power System Technology, 2021, 45(2): 447-461. |
[12] | 罗毅, 邱实. 基于负荷侧响应的含储热热电联产的风电消纳模型[J]. 太阳能学报, 2021, 42(2): 90-96. |
[12] | LUO Yi, QIU Shi. A wind power consumption model of chp with thermal energy storage based on demand response[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 90-96. |
[13] | 仪忠凯, 李志民. 计及热网储热和供热区域热惯性的热电联合调度策略[J]. 电网技术, 2018, 42(5): 1378-1384. |
[13] | YI Zhongkai, LI Zhimin. Combined heat and power dispatching strategy considering heat storage characteristics of heating network and thermal inertia in heating area[J]. Power System Technology, 2018, 42(5): 1378-1384. |
[14] | 崔杨, 曾鹏, 王铮, 等. 考虑碳捕集电厂能量转移特性的弃风消纳多时间尺度调度策略[J]. 中国电机工程学报, 2021, 41(3): 946-961. |
[14] | CUI Yang, ZENG Peng, WANG Zheng, et al. Multiple time scales scheduling strategy of wind power accommodation considering energy transfer characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2021, 41(3): 946-961. |
[15] | 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2016, 31(17): 41-51. |
[15] | LU Zhigang, SUI Yushan, FENG Tao, et al. Wind power accommodation low-carbon economic dispatch considering heat accumulator and carbon capture devices[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 41-51. |
[16] | 袁桂丽, 王琳博, 王宝源. 基于虚拟电厂“热电解耦”的负荷优化调度及经济效益分析[J]. 中国电机工程学报, 2017, 37(17): 4974-4985. |
[16] | YUAN Guili, WANG Linbo, WANG Baoyuan. Optimal dispatch of heat-power load and economy benefit analysis based on decoupling of heat and power of virtual power plant[J]. Proceedings of the CSEE, 2017, 37(17): 4974-4985. |
[17] | 陈启鑫, 季震, 康重庆, 等. 碳捕集电厂不同运行方式的电碳特性分析[J]. 电力系统自动化, 2012, 36(18): 109-115. |
[17] | CHEN Qixin, JI Zhen, KANG Chongqing, et al. Analysis on relation between power generation and carbon emission of carbon capture power plant in different operation modes[J]. Automation of Electric Power Systems, 2012, 36(18): 109-115. |
[18] | JI Z, KANG C Q, CHEN Q X, et al. Low-carbon power system dispatch incorporating carbon capture power plants[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4615-4623. |
[19] | 米阳, 李战强, 吴彦伟, 等. 基于两级需求响应的并网微电网双层优化调度[J]. 电网技术, 2018, 42(6): 1899-1906. |
[19] | MI Yang, LI Zhanqiang, WU Yanwei, et al. Bi-layer optimal dispatch of grid-connected microgrid based on two-stage demand response[J]. Power System Technology, 2018, 42(6): 1899-1906. |
[20] | 丁伟, 袁家海, 胡兆光. 基于用户价格响应和满意度的峰谷分时电价决策模型[J]. 电力系统自动化, 2005, 29(20): 10-14. |
[20] | DING Wei, YUAN Jiahai, HU Zhaoguang. Time-of-use price decision model considering users reaction and satisfaction index[J]. Automation of Electric Power Systems, 2005, 29(20): 10-14. |
[21] | 中华人民共和国生态环境部. 关于印发《2019-2020年全国碳排放权交易配额总量设定与分配实施方案(发电行业)》并做好配额预分配工作的通知[EB/OL]. (2020-12-29)[2020-12-30]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/t20201230_815546.html. |
[21] | Ministry of Ecology and Environment of the People’s Republic of China. Notice on issuing 2019-2020 National Carbon Emission Trading Quota Setting and Allocation Implementation Plan (power generation industry) and accomplishing the quota pre-allocation work[EB/OL]. (2020-12-29)[2020-12-30]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/t20201230_815546.html. |
[22] | 李平, 赵适宜, 金世军, 等. 基于热网与建筑物储热解耦的调峰能力提升方案[J]. 电力系统自动化, 2018, 42(13): 20-28. |
[22] | LI Ping, ZHAO Shiyi, JIN Shijun, et al. Promotion method of peak regulation capacity by power and heat decoupling based on heat storage of district heating network and buildings[J]. Automation of Electric Power Systems, 2018, 42(13): 20-28. |
[23] | DAI Y H, CHEN L, MIN Y, et al. Dispatch model for CHP with pipeline and building thermal energy storage considering heat transfer process[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 192-203. |
/
〈 |
|
〉 |