New Type Power System and the Integrated Energy

Design and Preparation Method of Capacitive Lithium-Titanate Battery

Expand
  • 1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. College of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
    3. Hunan Huahui New Enengy Co., Ltd., Yiyang 413000, Hunan, China

Received date: 2021-12-16

  Revised date: 2022-02-10

  Accepted date: 2022-02-21

  Online published: 2023-01-06

Abstract

In order to solve the problem of battery bulging and capacity fading, this paper proposes an innovative battery capacitor structure and the related preparation process. This method integrates the physical energy storage method of the capacitor and the chemical energy storage method of the energy storage battery. In the preparation process, a novel technology of columnar lithium-ion battery soaking is adopted, which improves the soaking efficiency and reduces the internal moisture of the battery. The related performance tests show that the capacity retention rate of the new lithium-titanate battery can reach 92.5% after 9 548 cycles, and the battery capacity can be maintained above 75% at a low temperature. The proposed method provides an effective means for improving the performance of the lithium-titanate battery.

Cite this article

WU Yuhang, LI Canbing, LI Xinxi, GU Huijun, GU Shanhua, ZHENG Xiaogeng . Design and Preparation Method of Capacitive Lithium-Titanate Battery[J]. Journal of Shanghai Jiaotong University, 2023 , 57(4) : 473 -481 . DOI: 10.16183/j.cnki.jsjtu.2021.509

References

[1] 叶佳, 郑美玟. 铅酸蓄电池和锂电池的可持续发展调查报告[J]. 应用能源技术, 2020, 268(4): 15-17.
[1] YE Jia, ZHENG Meiwen. Investigation report on sustainable development of lead-acid batteries and lithium batteries[J]. Applied Energy Technology, 2020, 268(4): 15-17.
[2] 张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228.
[2] ZHANG Mingjie, YANG Kai, DUAN Shuning, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43(7): 2221-2228.
[3] 蒋婉蓉, 解云川, 张志成. 高储能聚合物基纳米复合电介质[J]. 高电压技术, 2017, 43(7): 2234-2240.
[3] JIANG Wanrong, XIE Yunchuan, ZHANG Zhi-cheng. Polymer-based nanocomposite dielectrics with high energy storage capacity[J]. High Voltage Engineering, 2017, 43(7): 2234-2240.
[4] LIU X B, LI C B, SHAHIDEHPOUR M, et al. Fault current hierarchical limitation strategy for fault ride-through scheme of microgrid[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6566-6579.
[5] LI C B, CAO Y J, ZHANG M, et al. Hidden benefits of electric vehicles for addressing climate change[J]. Scientific Reports, 2015, 5: 9213.
[6] 李春晓. 锂离子电池负极材料研究进展[J]. 新材料产业, 2017(9): 27-33.
[6] LI Chunxiao. Research progress of anode materials for lithium ion batteries[J]. Advanced Materials Industry, 2017(9): 27-33.
[7] 罗军, 田刚领, 张柳丽, 等. 钛酸锂体系锂离子电池综述[J]. 电源技术, 2019, 43(4): 693-695.
[7] LUO Jun, TIAN Gangling, ZHANG Liuli, et al. Review of lithium titanate anode Li-ion battery[J]. Chinese Journal of Power Sources, 2019, 43(4): 693-695.
[8] ZHOU Z B, BENBOUZID M, FRéDéRIC CHARPENTIER J, et al. A review of energy storage technologies for marine current energy systems[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 390-400.
[9] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.
[10] 唐堃, 金虹, 潘广宏, 等. 钛酸锂电池技术及其产业发展现状[J]. 新材料产业, 2015(9): 12-17.
[10] TANG Kun, JIN Hong, PAN Guanghong, et al. Lithium titanate battery technology and its industrial development status[J]. Advanced Materials Industry, 2015(9): 12-17.
[11] CHANG-JIAN C W, HO B C, CHUNG C K, et al. Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries[J]. Ceramics International, 2018, 44(18): 23063-23072.
[12] LIU Z M, ZHANG N Q, WANG Z J, et al. Highly dispersed Ag nanoparticles (10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery[J]. Journal of Power Sources, 2012, 205: 479-482.
[13] DING Z J, ZHAO L, SUO L M, et al. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: A combined experimental and theoretical study[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(33): 15127-15133.
[14] 王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-67.
[14] WANG Can, MA Pan, ZHU Guoliang, et al. LIB long life graphite electrode: State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67.
[15] SINGER J P, BIRKE K P. Kinetic study of low temperature capacity fading in Li-ion cells[J]. Journal of Energy Storage, 2017, 13: 129-136.
[16] DOLOTKO O, SENYSHYN A, MüHLBAUER M J, et al. Neutron diffraction study of Li4Ti5O12 at low temperatures[J]. Solid State Sciences, 2014, 36: 101-106.
[17] ZHU Y R, YIN L C, YI T F, et al. Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material[J]. Journal of Alloys and Compounds, 2013, 547: 107-112.
[18] KULOVA T L. Effect of temperature on reversible and irreversible processes during lithium intercalation in graphite[J]. Russian Journal of Electrochemistry, 2004, 40(10): 1052-1059.
[19] BELHAROUAK I, KOENIG G M Jr, TAN T, et al. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 Lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(8): A1165-A1170.
[20] WU K, YANG J, LIU Y, et al. Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cell at elevated temperature[J]. Journal of Power Sources, 2013, 237: 285-290.
[21] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19(11): 1151-1163.
[22] 顾慧军. 柱形锂离子电池电芯含浸方法及在锂离子电池生产中的应用: CN 105336990A[P]. 2016-02-17 [2021-10-28].
[22] GU Huijun. Impregnation method for cell of cylindrical lithium ion battery and application in production of lithium ion battery: CN 105336990A[P]. 2016-02-17 [2021-10-28].
[23] TUSSEEVA E K, KULOVA T L, SKUNDIN A M. Temperature effect on the behavior of a lithium titanate electrode[J]. Russian Journal of Electrochemistry, 2018, 54(12): 1186-1194.
[24] 王瑜东, 杨凯, 高飞, 等. 钛酸锂电池胀气程度与循环性能的关系研究[J]. 高电压技术, 2018, 44(1): 152-159.
[24] WANG Yudong, YANG Kai, GAO Fei, et al. Study on the relationship between flatulence and cycle performance of lithium titanate battery[J]. High Voltage Engineering, 2018, 44(1): 152-159.
Outlines

/